These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 18713287)
61. Mannose phosphate isomerase isoenzymes in Plutella xylostella support common genetic bases of resistance to Bacillus thuringiensis toxins in Llpidopteran species. Herrero S; Ferré J; Escriche B Appl Environ Microbiol; 2001 Feb; 67(2):979-81. PubMed ID: 11157273 [TBL] [Abstract][Full Text] [Related]
62. Susceptibility of Plutella xylostella (L.) (Lepidoptera: Plutellidae) populations in Mexico to commercial formulations of Bacillus thuringiensis. Díaz-Gomez O; Rodríguez JC; Shelton AM; Lagunes A; Bujanos R J Econ Entomol; 2000 Jun; 93(3):963-70. PubMed ID: 10902356 [TBL] [Abstract][Full Text] [Related]
63. [New coleopterancidai strains of Bacillus thuringiensis and production of coleopterancide]. Gao M; Li R; Dai S; Li X; Fu J Wei Sheng Wu Xue Bao; 1999 Dec; 39(6):515-20. PubMed ID: 12555556 [TBL] [Abstract][Full Text] [Related]
64. Bacillus thuringiensis toxins: an overview of their biocidal activity. Palma L; Muñoz D; Berry C; Murillo J; Caballero P Toxins (Basel); 2014 Dec; 6(12):3296-325. PubMed ID: 25514092 [TBL] [Abstract][Full Text] [Related]
65. Effect of fermentation conditions on the enterotoxigenicity, cytotoxicity and pesticidal activity of Bacillus thuringiensis strains isolated in Taiwan. Pang JC; Chen ML; Ho YC; Yang CY; Tzeng CC; Kao SS; Tsen HY Bioresour Technol; 2010 Mar; 101(6):1871-6. PubMed ID: 19880313 [TBL] [Abstract][Full Text] [Related]
66. Construction of a recombinant Bacillus velezensis strain as an integrated control agent against plant diseases and insect pests. Roh JY; Liu Q; Choi JY; Wang Y; Shim HJ; Xu HG; Choi GJ; Kim JC; Je YH J Microbiol Biotechnol; 2009 Oct; 19(10):1223-9. PubMed ID: 19884784 [TBL] [Abstract][Full Text] [Related]
68. Purification of the insecticidal Cry2Ad protein from a Bt-isolated BRC-HZP10 strain and toxin assay to the diamondback moth, Plutella xylostella (L.). Liao JY; Gao YQ; Wu QY; Zhu YC; You MS Genet Mol Res; 2015 Jul; 14(3):7661-70. PubMed ID: 26214446 [TBL] [Abstract][Full Text] [Related]
69. Activity of vegetative insecticidal proteins Vip3Aa58 and Vip3Aa59 of Bacillus thuringiensis against lepidopteran pests. Baranek J; Kaznowski A; Konecka E; Naimov S J Invertebr Pathol; 2015 Sep; 130():72-81. PubMed ID: 26146224 [TBL] [Abstract][Full Text] [Related]
70. Cry78Aa, a novel Bacillus thuringiensis insecticidal protein with activity against Laodelphax striatellus and Nilaparvata lugens. Wang Y; Liu Y; Zhang J; Crickmore N; Song F; Gao J; Shu C J Invertebr Pathol; 2018 Oct; 158():1-5. PubMed ID: 30017953 [TBL] [Abstract][Full Text] [Related]
71. Further research on the biological function of inclusion bodies of Anomala cuprea entomopoxvirus, with special reference to the effect on the insecticidal activity of a Bacillus thuringiensis formulation. Mitsuhashi W; Asano S; Miyamoto K; Wada S Pest Manag Sci; 2014 Jan; 70(1):46-54. PubMed ID: 23424042 [TBL] [Abstract][Full Text] [Related]
72. Screening Bacillus thuringiensis delta-endotoxins for activity against the bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae). Erlandson M; Braun L; Bradfisch G; Muller-Cohn J J Invertebr Pathol; 2002 Jul; 80(3):191-3. PubMed ID: 12384086 [No Abstract] [Full Text] [Related]
73. Activity of Bacillus thuringiensis cyt1Ba crystal protein against hymenopteran forest pests. van Frankenhuyzen K; Tonon A J Invertebr Pathol; 2013 Jun; 113(2):160-2. PubMed ID: 23545068 [TBL] [Abstract][Full Text] [Related]
74. Characterization of a new cry2Ab gene of Bacillus thuringiensis with high insecticidal activity against Plutella xylostella L. Pan Z; Xu L; Zhu Y; Shi H; Chen Z; Chen M; Chen Q; Liu B World J Microbiol Biotechnol; 2014 Oct; 30(10):2655-62. PubMed ID: 24943249 [TBL] [Abstract][Full Text] [Related]
75. Pest management through Bacillus thuringiensis (Bt) in a tea-silkworm ecosystem: status and potential prospects. Dashora K; Roy S; Nagpal A; Roy SM; Flood J; Prasad AK; Khetarpal R; Neave S; Muraleedharan N Appl Microbiol Biotechnol; 2017 Mar; 101(5):1795-1803. PubMed ID: 28144706 [TBL] [Abstract][Full Text] [Related]
76. Molecular and insecticidal characterization of a novel Cry-related protein from Bacillus thuringiensis toxic against Myzus persicae. Palma L; Muñoz D; Berry C; Murillo J; de Escudero IR; Caballero P Toxins (Basel); 2014 Nov; 6(11):3144-56. PubMed ID: 25384108 [TBL] [Abstract][Full Text] [Related]
77. Assessing the susceptibility of cruciferous Lepidoptera to Cry1Ba2 and Cry1Ca4 for future transgenic cruciferous vegetables. Shelton AM; Gujar GT; Chen M; Rauf A; Srinivasan R; Kalia V; Mittal A; Kumari A; Ramesh K; Borkakatti R; Zhao JZ; Endersby N; Russell D; Wu YD; Uijtewaal B J Econ Entomol; 2009 Dec; 102(6):2217-23. PubMed ID: 20069851 [TBL] [Abstract][Full Text] [Related]
78. Phage displayed Bacillus thuringiensis Cry1Ba4 toxin is toxic to Plutella xylostella. Nathan S; Aziz DH; Mahadi NM Curr Microbiol; 2006 Nov; 53(5):412-5. PubMed ID: 17036210 [TBL] [Abstract][Full Text] [Related]
79. Current Insights on Vegetative Insecticidal Proteins (Vip) as Next Generation Pest Killers. Syed T; Askari M; Meng Z; Li Y; Abid MA; Wei Y; Guo S; Liang C; Zhang R Toxins (Basel); 2020 Aug; 12(8):. PubMed ID: 32823872 [No Abstract] [Full Text] [Related]
80. Efficacy of native and recombinant Cry1B protein against experimentally induced and naturally acquired ovine myiasis (fly strike) in sheep. Heath AC; Broadwell AH; Chilcott CN; Wigley PJ; Shoemaker CB J Econ Entomol; 2004 Dec; 97(6):1797-804. PubMed ID: 15666730 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]