BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 18713314)

  • 1. Evolutionary history of the ancient cutinase family in five filamentous Ascomycetes reveals differential gene duplications and losses and in Magnaporthe grisea shows evidence of sub- and neo-functionalization.
    Skamnioti P; Furlong RF; Gurr SJ
    New Phytol; 2008; 180(3):711-721. PubMed ID: 18713314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evolutionary history of cytochrome P450 genes in four filamentous Ascomycetes.
    Deng J; Carbone I; Dean RA
    BMC Evol Biol; 2007 Feb; 7():30. PubMed ID: 17324274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fate of gene duplicates in the genomes of fungal pathogens.
    Skamnioti P; Furlong RF; Gurr SJ
    Commun Integr Biol; 2008; 1(2):196-8. PubMed ID: 19513258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and analysis of CUT1, a cutinase gene from Magnaporthe grisea.
    Sweigard JA; Chumley FG; Valent B
    Mol Gen Genet; 1992 Mar; 232(2):174-82. PubMed ID: 1557023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fungi have three tetraspanin families with distinct functions.
    Lambou K; Tharreau D; Kohler A; Sirven C; Marguerettaz M; Barbisan C; Sexton AC; Kellner EM; Martin F; Howlett BJ; Orbach MJ; Lebrun MH
    BMC Genomics; 2008 Feb; 9():63. PubMed ID: 18241352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide identification, classification and expression analysis in fungal-plant interactions of cutinase gene family and functional analysis of a putative ClCUT7 in Curvularia lunata.
    Liu T; Hou J; Wang Y; Jin Y; Borth W; Zhao F; Liu Z; Hu J; Zuo Y
    Mol Genet Genomics; 2016 Jun; 291(3):1105-15. PubMed ID: 26767524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea.
    Kulkarni RD; Thon MR; Pan H; Dean RA
    Genome Biol; 2005; 6(3):R24. PubMed ID: 15774025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disruption of a Magnaporthe grisea cutinase gene.
    Sweigard JA; Chumley FG; Valent B
    Mol Gen Genet; 1992 Mar; 232(2):183-90. PubMed ID: 1557024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative genomic analysis of the calcium signaling machinery in Neurospora crassa, Magnaporthe grisea, and Saccharomyces cerevisiae.
    Zelter A; Bencina M; Bowman BJ; Yarden O; Read ND
    Fungal Genet Biol; 2004 Sep; 41(9):827-41. PubMed ID: 15288019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide analysis of microsatellite sequence in seven filamentous fungi.
    Li CY; Liu L; Yang J; Li JB; Su Y; Zhang Y; Wang YY; Zhu YY
    Interdiscip Sci; 2009 Jun; 1(2):141-50. PubMed ID: 20640828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Cutinase Bdo_10846 Play an Important Role in the Virulence of
    Dong BZ; Zhu XQ; Fan J; Guo LY
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33673023
    [No Abstract]   [Full Text] [Related]  

  • 12. [Cloning of a homologous gene of Magnaporthe grisea PMK1 type MAPK from Ustilaginoidea virens and functional identification by complement in Magnaporthe grisea corresponding mutant].
    Zhang Z; Du X; Chai R; Wang J; Qiu H; Mao X; Sun G
    Wei Sheng Wu Xue Bao; 2008 Nov; 48(11):1473-8. PubMed ID: 19149162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of three ubiquitin genes of the rice blast fungus Magnaporthe grisea, one of which is highly expressed during initial stages of plant colonisation.
    McCafferty HR; Talbot NJ
    Curr Genet; 1998 May; 33(5):352-61. PubMed ID: 9618586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for horizontal transfer of a secondary metabolite gene cluster between fungi.
    Khaldi N; Collemare J; Lebrun MH; Wolfe KH
    Genome Biol; 2008 Jan; 9(1):R18. PubMed ID: 18218086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining comparative sequence and genomic data to ascertain phylogenetic relationships and explore the evolution of the large GDSL-lipase family in land plants.
    Volokita M; Rosilio-Brami T; Rivkin N; Zik M
    Mol Biol Evol; 2011 Jan; 28(1):551-65. PubMed ID: 20801908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Blumeria graminis gene family encoding proteins with a C-terminal variable region with homologues in pathogenic fungi.
    Grell MN; Mouritzen P; Giese H
    Gene; 2003 Jun; 311():181-92. PubMed ID: 12853153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of SET-domain protein families in the unicellular and multicellular Ascomycota fungi.
    Veerappan CS; Avramova Z; Moriyama EN
    BMC Evol Biol; 2008 Jul; 8():190. PubMed ID: 18593478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small heat shock proteins, phylogeny in filamentous fungi and expression analyses in Aspergillus nidulans.
    Wu J; Wang M; Zhou L; Yu D
    Gene; 2016 Jan; 575(2 Pt 3):675-9. PubMed ID: 26403724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of the cutinase gene family: evidence for lateral gene transfer of a candidate Phytophthora virulence factor.
    Belbahri L; Calmin G; Mauch F; Andersson JO
    Gene; 2008 Jan; 408(1-2):1-8. PubMed ID: 18024004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NUT1, a major nitrogen regulatory gene in Magnaporthe grisea, is dispensable for pathogenicity.
    Froeliger EH; Carpenter BE
    Mol Gen Genet; 1996 Jul; 251(6):647-56. PubMed ID: 8757395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.