These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
75 related articles for article (PubMed ID: 18713419)
1. Invasion possibility and potential effects of Rhus typhina on Beijing municipality. Wang G; Jiang G; Yu S; Li Y; Liu H J Integr Plant Biol; 2008 May; 50(5):522-30. PubMed ID: 18713419 [TBL] [Abstract][Full Text] [Related]
2. Dominance of an alien shrub Rhus typhina over a native shrub Vitex negundo var. heterophylla under variable water supply patterns. Du N; Tan X; Li Q; Liu X; Zhang W; Wang R; Liu J; Guo W PLoS One; 2017; 12(4):e0176491. PubMed ID: 28445505 [TBL] [Abstract][Full Text] [Related]
3. Ecophysiological evaluation of the potential invasiveness of Rhus typhina in its non-native habitats. Zhang Z; Jiang C; Zhang J; Zhang H; Shi L Tree Physiol; 2009 Nov; 29(11):1307-16. PubMed ID: 19734548 [TBL] [Abstract][Full Text] [Related]
4. Increased soil moisture aggravated the competitive effects of the invasive tree Rhus typhina on the native tree Cotinus coggygria. Guo X; Xu ZW; Li MY; Ren XH; Liu J; Guo WH BMC Ecol; 2020 Mar; 20(1):17. PubMed ID: 32228576 [TBL] [Abstract][Full Text] [Related]
5. The invasive tree staghorn sumac affects soil N Wu B; Wang S; Wei M; Zhou J; Jiang K; Du D; Wang C Plant Biol (Stuttg); 2019 Sep; 21(5):951-960. PubMed ID: 31050107 [TBL] [Abstract][Full Text] [Related]
6. Trait value and phenotypic integration contribute to the response of exotic Rhus typhina to heterogeneous nitrogen deposition: A comparison with native Rhus chinensis. Wang Q; Li MY; Eller F; Luo YJ; Nong YL; Xing LJ; Xu ZW; Li HM; Lu HC; Guo X Sci Total Environ; 2022 Oct; 844():157199. PubMed ID: 35810896 [TBL] [Abstract][Full Text] [Related]
7. Invasion speed is affected by geographical variation in the strength of Allee effects. Tobin PC; Whitmire SL; Johnson DM; Bjørnstad ON; Liebhold AM Ecol Lett; 2007 Jan; 10(1):36-43. PubMed ID: 17204115 [TBL] [Abstract][Full Text] [Related]
8. Biodiversity in microbial communities: system scale patterns and mechanisms. Parnell JJ; Crowl TA; Weimer BC; Pfrender ME Mol Ecol; 2009 Apr; 18(7):1455-62. PubMed ID: 19298265 [TBL] [Abstract][Full Text] [Related]
9. Composition analysis and antioxidant activities of the Liu T; Li Z; Li R; Cui Y; Zhao Y; Yu Z J Pharm Anal; 2019 Oct; 9(5):332-338. PubMed ID: 31929942 [TBL] [Abstract][Full Text] [Related]
10. Seasonal conductivity and embolism in the roots and stems of two clonal ring-porous trees, Sassafras albidum (Lauraceae) and Rhus typhina (Anacardiaceae). Jaquish LL; Ewers FW Am J Bot; 2001 Feb; 88(2):206-12. PubMed ID: 11222243 [TBL] [Abstract][Full Text] [Related]
11. Loss of functional diversity under land use intensification across multiple taxa. Flynn DF; Gogol-Prokurat M; Nogeire T; Molinari N; Richers BT; Lin BB; Simpson N; Mayfield MM; DeClerck F Ecol Lett; 2009 Jan; 12(1):22-33. PubMed ID: 19087109 [TBL] [Abstract][Full Text] [Related]
12. Rarity, commonness, and the contribution of individual species to species richness patterns. Sizling AL; Sizlingová E; Storch D; Reif J; Gaston KJ Am Nat; 2009 Jul; 174(1):82-93. PubMed ID: 19463062 [TBL] [Abstract][Full Text] [Related]
13. Chemical composition and biological activity of staghorn sumac (Rhus typhina). Wang S; Zhu F Food Chem; 2017 Dec; 237():431-443. PubMed ID: 28764017 [TBL] [Abstract][Full Text] [Related]
14. Biosynthesis of gallic acid in Rhus typhina: discrimination between alternative pathways from natural oxygen isotope abundance. Werner RA; Rossmann A; Schwarz C; Bacher A; Schmidt HL; Eisenreich W Phytochemistry; 2004 Oct; 65(20):2809-13. PubMed ID: 15474568 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome Analysis Revealed the Possible Reasons for the Change of Ni Resistance in Qu T; Ma Y; Yun M; Zhao C Plants (Basel); 2024 May; 13(10):. PubMed ID: 38794358 [TBL] [Abstract][Full Text] [Related]
16. Causes and consequences of woody plant encroachment into western North American grasslands. Van Auken OW J Environ Manage; 2009 Jul; 90(10):2931-42. PubMed ID: 19501450 [TBL] [Abstract][Full Text] [Related]
17. Negative per capita effects of two invasive plants, Lythrum salicaria and Phalaris arundinacea, on the moth diversity of wetland communities. Schooler SS; McEvoy PB; Hammond P; Coombs EM Bull Entomol Res; 2009 Jun; 99(3):229-43. PubMed ID: 18947450 [TBL] [Abstract][Full Text] [Related]
18. Contaminants reduce the richness and evenness of marine communities: a review and meta-analysis. Johnston EL; Roberts DA Environ Pollut; 2009 Jun; 157(6):1745-52. PubMed ID: 19286291 [TBL] [Abstract][Full Text] [Related]
19. Effects of alien plants on insect abundance and biomass: a food-web approach. Heleno RH; Ceia RS; Ramos JA; Memmott J Conserv Biol; 2009 Apr; 23(2):410-9. PubMed ID: 19128322 [TBL] [Abstract][Full Text] [Related]
20. Spatiotemporal patterns and dynamics of species richness and abundance of woody plant functional groups in a tropical forest landscape of Hainan Island, South China. Zhang ZD; Zang RG; Qi YD J Integr Plant Biol; 2008 May; 50(5):547-58. PubMed ID: 18713422 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]