These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 18713470)

  • 1. A compartment model of VEGF distribution in blood, healthy and diseased tissues.
    Stefanini MO; Wu FT; Mac Gabhann F; Popel AS
    BMC Syst Biol; 2008 Aug; 2():77. PubMed ID: 18713470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A two-compartment model of VEGF distribution in the mouse.
    Yen P; Finley SD; Engel-Stefanini MO; Popel AS
    PLoS One; 2011; 6(11):e27514. PubMed ID: 22087332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. VEGF and soluble VEGF receptor-1 (sFlt-1) distributions in peripheral arterial disease: an in silico model.
    Wu FT; Stefanini MO; Mac Gabhann F; Kontos CD; Annex BH; Popel AS
    Am J Physiol Heart Circ Physiol; 2010 Jun; 298(6):H2174-91. PubMed ID: 20382861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracranial meningiomas, the VEGF-A pathway, and peritumoral brain oedema.
    Nassehi D
    Dan Med J; 2013 Apr; 60(4):B4626. PubMed ID: 23651727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multiscale computational model predicts distribution of anti-angiogenic isoform VEGF
    Chu LH; Ganta VC; Choi MH; Chen G; Finley SD; Annex BH; Popel AS
    Sci Rep; 2016 Nov; 6():37030. PubMed ID: 27853189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of VEGF isoforms with VEGFR-1, VEGFR-2, and neuropilin in vivo: a computational model of human skeletal muscle.
    Mac Gabhann F; Popel AS
    Am J Physiol Heart Circ Physiol; 2007 Jan; 292(1):H459-74. PubMed ID: 16980341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting neuropilin-1 to inhibit VEGF signaling in cancer: Comparison of therapeutic approaches.
    Mac Gabhann F; Popel AS
    PLoS Comput Biol; 2006 Dec; 2(12):e180. PubMed ID: 17196035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of the receptor binding profiles of the vascular endothelial growth factors on their angiogenic features.
    Nieminen T; Toivanen PI; Rintanen N; Heikura T; Jauhiainen S; Airenne KJ; Alitalo K; Marjomäki V; Ylä-Herttuala S
    Biochim Biophys Acta; 2014 Jan; 1840(1):454-63. PubMed ID: 24112971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular regulation of VEGF: isoforms, proteolysis, and vascular patterning.
    Vempati P; Popel AS; Mac Gabhann F
    Cytokine Growth Factor Rev; 2014 Feb; 25(1):1-19. PubMed ID: 24332926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for Pro-angiogenic Functions of VEGF-Ax.
    Xin H; Zhong C; Nudleman E; Ferrara N
    Cell; 2016 Sep; 167(1):275-284.e6. PubMed ID: 27662093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Pharmacology of VEGF-A Isoforms: Binding and Signalling at VEGFR2.
    Peach CJ; Mignone VW; Arruda MA; Alcobia DC; Hill SJ; Kilpatrick LE; Woolard J
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29690653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential binding of VEGF isoforms to VEGF receptor 2 in the presence of neuropilin-1: a computational model.
    Mac Gabhann F; Popel AS
    Am J Physiol Heart Circ Physiol; 2005 Jun; 288(6):H2851-60. PubMed ID: 15708957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A compartment model of VEGF distribution in humans in the presence of soluble VEGF receptor-1 acting as a ligand trap.
    Wu FT; Stefanini MO; Mac Gabhann F; Popel AS
    PLoS One; 2009; 4(4):e5108. PubMed ID: 19352513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. VEGFR3 Modulates Vascular Permeability by Controlling VEGF/VEGFR2 Signaling.
    Heinolainen K; Karaman S; D'Amico G; Tammela T; Sormunen R; Eklund L; Alitalo K; Zarkada G
    Circ Res; 2017 Apr; 120(9):1414-1425. PubMed ID: 28298294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of growth factor-receptor systems from molecular-level protein interaction networks to whole-body compartment models.
    Wu FTH; Stefanini MO; Gabhann FM; Popel AS
    Methods Enzymol; 2009; 467():461-497. PubMed ID: 19897104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential expression of VEGF isoforms and VEGF(164)-specific receptor neuropilin-1 in the mouse uterus suggests a role for VEGF(164) in vascular permeability and angiogenesis during implantation.
    Halder JB; Zhao X; Soker S; Paria BC; Klagsbrun M; Das SK; Dey SK
    Genesis; 2000 Mar; 26(3):213-24. PubMed ID: 10705382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuropilin-1 is essential for enhanced VEGF(165)-mediated vasodilatation in collateral-dependent coronary arterioles of exercise-trained pigs.
    Fogarty JA; Delp MD; Muller-Delp JM; Laine GA; Parker JL; Heaps CL
    J Vasc Res; 2009; 46(2):152-61. PubMed ID: 18769069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skeletal muscle VEGF gradients in peripheral arterial disease: simulations of rest and exercise.
    Ji JW; Mac Gabhann F; Popel AS
    Am J Physiol Heart Circ Physiol; 2007 Dec; 293(6):H3740-9. PubMed ID: 17890434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The presence of VEGF receptors on the luminal surface of endothelial cells affects VEGF distribution and VEGF signaling.
    Stefanini MO; Wu FT; Mac Gabhann F; Popel AS
    PLoS Comput Biol; 2009 Dec; 5(12):e1000622. PubMed ID: 20041209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chimeric VEGF-E(NZ7)/PlGF promotes angiogenesis via VEGFR-2 without significant enhancement of vascular permeability and inflammation.
    Zheng Y; Murakami M; Takahashi H; Yamauchi M; Kiba A; Yamaguchi S; Yabana N; Alitalo K; Shibuya M
    Arterioscler Thromb Vasc Biol; 2006 Sep; 26(9):2019-26. PubMed ID: 16794222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.