BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 18713616)

  • 1. Hemoglobin plus myoglobin concentrations and near infrared light pathlength in phantom and pig hearts determined by diffuse reflectance spectroscopy.
    Gussakovsky E; Jilkina O; Yang Y; Kupriyanov V
    Anal Biochem; 2008 Nov; 382(2):107-15. PubMed ID: 18713616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative contributions of hemoglobin and myoglobin to near-infrared spectroscopic images of cardiac tissue.
    Nighswander-Rempel SP; Kupriyanov VV; Shaw RA
    Appl Spectrosc; 2005 Feb; 59(2):190-3. PubMed ID: 15720759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping the myoglobin concentration, oxygenation, and optical pathlength in heart ex vivo using near-infrared imaging.
    Gussakovsky E; Yang Y; Rendell J; Jilkina O; Kupriyanov V
    Anal Biochem; 2010 Dec; 407(1):120-7. PubMed ID: 20643093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping regional oxygenation and flow in pig hearts in vivo using near-infrared spectroscopic imaging.
    Kupriyanov VV; Nighswander-Rempel S; Xiang B
    J Mol Cell Cardiol; 2004 Nov; 37(5):947-57. PubMed ID: 15522272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NIR spectroscopic imaging to map hemoglobin + myoglobin oxygenation, their concentration and optical pathlength across a beating pig heart during surgery.
    Gussakovsky E; Yang Y; Rendell J; Jilkina O; Kupriyanov V
    J Biophotonics; 2012 Feb; 5(2):128-39. PubMed ID: 21688399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of near-infrared path length in fibrous phantom and muscle tissue.
    Gussakovsky E; Kupriyanov V
    Appl Spectrosc; 2008 Jun; 62(6):671-6. PubMed ID: 18559155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadband diffuse optical spectroscopy measurement of hemoglobin concentration during hypovolemia in rabbits.
    Lee J; Saltzman DJ; Cerussi AE; Gelfand DV; Milliken J; Waddington T; Tromberg BJ; Brenner M
    Physiol Meas; 2006 Aug; 27(8):757-67. PubMed ID: 16772673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skeletal muscle oxygenation monitoring by near infrared spectroscopy.
    De Blasi RA; Quaglia E; Ferrari M
    Biochem Int; 1991 Sep; 25(2):241-8. PubMed ID: 1789791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near infrared spectroscopy in large animals: optical pathlength and influence of hair covering and epidermal pigmentation.
    Pringle J; Roberts C; Kohl M; Lekeux P
    Vet J; 1999 Jul; 158(1):48-52. PubMed ID: 10409416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active muscle oxygenation dynamics measured during high-intensity exercise by using two near-infrared spectroscopy methods.
    Saitoh T; Ooue A; Kondo N; Niizeki K; Koga S
    Adv Exp Med Biol; 2010; 662():225-30. PubMed ID: 20204796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [New quantitative method for non-invasive monitoring of tissue blood oxygenation by near infrared spectrophotometry].
    Tamura M; Ishiki M; Tachibana H; Tamura T
    Kokyu To Junkan; 1989 Sep; 37(9):997-1002. PubMed ID: 2556768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimated contribution of hemoglobin and myoglobin to near infrared spectroscopy.
    Davis ML; Barstow TJ
    Respir Physiol Neurobiol; 2013 Apr; 186(2):180-7. PubMed ID: 23357615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffuse reflectance spectrophotometry with visible light: comparison of four different methods in a tissue phantom.
    Gade J; Palmqvist D; Plomgård P; Greisen G
    Phys Med Biol; 2006 Jan; 51(1):121-36. PubMed ID: 16357435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approach for non-destructive pigment analysis in model liquids and carrots by means of time-of-flight and multi-wavelength remittance readings.
    Zude M; Spinelli L; Torricelli A
    Anal Chim Acta; 2008 Aug; 623(2):204-12. PubMed ID: 18620925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new technique for measuring oxygen saturations of hemoglobin and myoglobin and its application in open heart surgery.
    Figulla HR; Leitz KH; Hoffmann J; Kreuzer H
    Thorac Cardiovasc Surg; 1985 Dec; 33(6):352-3. PubMed ID: 2417371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of adipose tissue thickness, muscle site, and sex on near-infrared spectroscopy derived total-[hemoglobin + myoglobin].
    Craig JC; Broxterman RM; Wilcox SL; Chen C; Barstow TJ
    J Appl Physiol (1985); 2017 Dec; 123(6):1571-1578. PubMed ID: 28935822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavelength shift analysis: a simple method to determine the contribution of hemoglobin and myoglobin to in vivo optical spectra.
    Marcinek DJ; Amara CE; Matz K; Conley KE; Schenkman KA
    Appl Spectrosc; 2007 Jun; 61(6):665-9. PubMed ID: 17650380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near infrared and visible spectroscopic measurements to detect changes in light scattering and hemoglobin oxygen saturation from rat spinal cord during peripheral stimulation.
    Liu H; Radhakrishnan H; Senapati AK; Hagains CE; Peswani D; Mathker A; Peng YB
    Neuroimage; 2008 Mar; 40(1):217-27. PubMed ID: 18191588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myoglobin and hemoglobin rotational diffusion in the cell.
    Wang D; Kreutzer U; Chung Y; Jue T
    Biophys J; 1997 Nov; 73(5):2764-70. PubMed ID: 9370470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebral hemoglobin concentration and oxygen saturation measured by intensity modulated optical spectroscopy in the human fetus during labor.
    Chipchase J; Kirkby D; Peebles D; Cope M; Rodeck C
    J Perinat Med; 2002; 30(6):502-9. PubMed ID: 12530107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.