BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

919 related articles for article (PubMed ID: 18713623)

  • 1. Role of nitric oxide and carbon monoxide in N(omega)-Nitro-L-arginine methyl ester-resistant acetylcholine-induced relaxation in chicken carotid artery.
    Leo MD; Siddegowda YK; Kumar D; Tandan SK; Sastry KV; Prakash VR; Mishra SK
    Eur J Pharmacol; 2008 Oct; 596(1-3):111-7. PubMed ID: 18713623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NO/PGI2-independent vasorelaxation and the cytochrome P450 pathway in rabbit carotid artery.
    Dong H; Waldron GJ; Galipeau D; Cole WC; Triggle CR
    Br J Pharmacol; 1997 Feb; 120(4):695-701. PubMed ID: 9051310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF.
    Zygmunt PM; Plane F; Paulsson M; Garland CJ; Högestätt ED
    Br J Pharmacol; 1998 Jul; 124(5):992-1000. PubMed ID: 9692786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of voltage-dependent potassium channels and myo-endothelial gap junctions in 4-aminopyridine-induced inhibition of acetylcholine relaxation in rat carotid artery.
    Gupta PK; Subramani J; Leo MD; Sikarwar AS; Parida S; Prakash VR; Mishra SK
    Eur J Pharmacol; 2008 Sep; 591(1-3):171-6. PubMed ID: 18577383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relaxation by bradykinin in porcine ciliary artery. Role of nitric oxide and K(+)-channels.
    Zhu P; Bény JL; Flammer J; Lüscher TF; Haefliger IO
    Invest Ophthalmol Vis Sci; 1997 Aug; 38(9):1761-7. PubMed ID: 9286264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetylcholine-induced vasodilation may depend entirely upon NO in the femoral artery of young piglets.
    Støen R; Lossius K; Karlsson JO
    Br J Pharmacol; 2003 Jan; 138(1):39-46. PubMed ID: 12522071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of NO in the endothelium-independent relaxing effects of N(omega)-hydroxy-L-arginine and other compounds bearing a C=NOH function in the rat aorta.
    Vetrovsky P; Boucher JL; Schott C; Beranova P; Chalupsky K; Callizot N; Muller B; Entlicher G; Mansuy D; Stoclet JC
    J Pharmacol Exp Ther; 2002 Nov; 303(2):823-30. PubMed ID: 12388669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelium-dependent vasorelaxation independent of nitric oxide and K(+) release in isolated renal arteries of rats.
    Jiang F; Dusting GJ
    Br J Pharmacol; 2001 Apr; 132(7):1558-64. PubMed ID: 11264250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Augmented endothelium-derived hyperpolarizing factor-mediated relaxations attenuate endothelial dysfunction in femoral and mesenteric, but not in carotid arteries from type I diabetic rats.
    Shi Y; Ku DD; Man RY; Vanhoutte PM
    J Pharmacol Exp Ther; 2006 Jul; 318(1):276-81. PubMed ID: 16565165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potassium channel-mediated relaxation to acetylcholine in rabbit arteries.
    Cowan CL; Palacino JJ; Najibi S; Cohen RA
    J Pharmacol Exp Ther; 1993 Sep; 266(3):1482-9. PubMed ID: 8396636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. P2U-receptor mediated endothelium-dependent but nitric oxide-independent vascular relaxation.
    Malmsjö M; Edvinsson L; Erlinge D
    Br J Pharmacol; 1998 Feb; 123(4):719-29. PubMed ID: 9517392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycyrrhetinic acid-sensitive mechanism does not make a major contribution to non-prostanoid, non-nitric oxide mediated endothelium-dependent relaxation of rat mesenteric artery in response to acetylcholine.
    Tanaka Y; Otsuka A; Tanaka H; Shigenobu K
    Res Commun Mol Pathol Pharmacol; 1999 Mar; 103(3):227-39. PubMed ID: 10509734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelial mediators of the acetylcholine-induced relaxation of the rat femoral artery.
    Leung HS; Leung FP; Yao X; Ko WH; Chen ZY; Vanhoutte PM; Huang Y
    Vascul Pharmacol; 2006 May; 44(5):299-308. PubMed ID: 16527547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of endothelium-derived relaxing factors released by bradykinin in human resistance arteries.
    Ohlmann P; Martínez MC; Schneider F; Stoclet JC; Andriantsitohaina R
    Br J Pharmacol; 1997 Jun; 121(4):657-64. PubMed ID: 9208131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sex differences in the relative contributions of nitric oxide and EDHF to agonist-stimulated endothelium-dependent relaxations in the rat isolated mesenteric arterial bed.
    McCulloch AI; Randall MD
    Br J Pharmacol; 1998 Apr; 123(8):1700-6. PubMed ID: 9605578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that different mechanisms underlie smooth muscle relaxation to nitric oxide and nitric oxide donors in the rabbit isolated carotid artery.
    Plane F; Wiley KE; Jeremy JY; Cohen RA; Garland CJ
    Br J Pharmacol; 1998 Apr; 123(7):1351-8. PubMed ID: 9579730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic inhibition of nitric-oxide synthase potentiates endothelium-dependent contractions in the rat aorta by augmenting the expression of cyclooxygenase-2.
    Qu C; Leung SW; Vanhoutte PM; Man RY
    J Pharmacol Exp Ther; 2010 Aug; 334(2):373-80. PubMed ID: 20444882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of nitric oxide generation unmasks vascular dysfunction in insulin-resistant, obese JCR:LA-cp rats.
    McKendrick JD; Salas E; Dubé GP; Murat J; Russell JC; Radomski MW
    Br J Pharmacol; 1998 May; 124(2):361-9. PubMed ID: 9641554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relaxation induced by acetylcholine involves endothelium-derived hyperpolarizing factor in 2-kidney 1-clip hypertensive rat carotid arteries.
    Sendão Oliveira AP; Bendhack LM
    Pharmacology; 2004 Dec; 72(4):231-9. PubMed ID: 15539883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential effect of nitric oxide synthase inhibitors on acetylcholine-induced relaxation of rat pulmonary and celiac artery rings.
    Yaghi A; Paterson NA; McCormack DG
    Can J Physiol Pharmacol; 1997 Apr; 75(4):279-86. PubMed ID: 9196853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 46.