These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 18713695)

  • 1. Collagenase-aided intracortical microelectrode array insertion: effects on insertion force and recording performance.
    Paralikar KJ; Clement RS
    IEEE Trans Biomed Eng; 2008 Sep; 55(9):2258-67. PubMed ID: 18713695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collagenase-aided insertion of intracortical microelectrode arrays: evaluation of insertion force and chronic recording performance.
    Paralikar KJ; Lawrence JK; Clement RS
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2958-61. PubMed ID: 17946994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-vivo implant mechanics of flexible, silicon-based ACREO microelectrode arrays in rat cerebral cortex.
    Jensen W; Yoshida K; Hofmann UG
    IEEE Trans Biomed Eng; 2006 May; 53(5):934-40. PubMed ID: 16686416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex.
    Kipke DR; Vetter RJ; Williams JC; Hetke JF
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):151-5. PubMed ID: 12899260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants.
    Prasad A; Xue QS; Sankar V; Nishida T; Shaw G; Streit WJ; Sanchez JC
    J Neural Eng; 2012 Oct; 9(5):056015. PubMed ID: 23010756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays.
    He W; McConnell GC; Bellamkonda RV
    J Neural Eng; 2006 Dec; 3(4):316-26. PubMed ID: 17124336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental study on the mechanical interaction between silicon neural microprobes and rat dura mater during insertion.
    Fekete Z; Németh A; Márton G; Ulbert I; Pongrácz A
    J Mater Sci Mater Med; 2015 Feb; 26(2):70. PubMed ID: 25631267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ceramic-based multisite electrode arrays for chronic single-neuron recording.
    Moxon KA; Leiser SC; Gerhardt GA; Barbee KA; Chapin JK
    IEEE Trans Biomed Eng; 2004 Apr; 51(4):647-56. PubMed ID: 15072219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extraction force and cortical tissue reaction of silicon microelectrode arrays implanted in the rat brain.
    McConnell GC; Schneider TM; Owens DJ; Bellamkonda RV
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1097-107. PubMed ID: 17554828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A floating metal microelectrode array for chronic implantation.
    Musallam S; Bak MJ; Troyk PR; Andersen RA
    J Neurosci Methods; 2007 Feb; 160(1):122-7. PubMed ID: 17067683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A MEMS fabricated flexible electrode array for recording surface field potentials.
    Hollenberg BA; Richards CD; Richards R; Bahr DF; Rector DM
    J Neurosci Methods; 2006 May; 153(1):147-53. PubMed ID: 16352343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thin microelectrodes reduce GFAP expression in the implant site in rodent somatosensory cortex.
    Stice P; Gilletti A; Panitch A; Muthuswamy J
    J Neural Eng; 2007 Jun; 4(2):42-53. PubMed ID: 17409479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal pH dynamics following insertion of neural microelectrode arrays.
    Johnson MD; Kao OE; Kipke DR
    J Neurosci Methods; 2007 Mar; 160(2):276-87. PubMed ID: 17084461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes.
    Otto KJ; Johnson MD; Kipke DR
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):333-40. PubMed ID: 16485763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex.
    Vetter RJ; Williams JC; Hetke JF; Nunamaker EA; Kipke DR
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):896-904. PubMed ID: 15188856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatible benzocyclobutene (BCB)-based neural implants with micro-fluidic channel.
    Lee K; He J; Clement R; Massia S; Kim B
    Biosens Bioelectron; 2004 Sep; 20(2):404-7. PubMed ID: 15308247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of chronic multi-channel cortical implantation techniques: manual versus mechanical insertion.
    Rennaker RL; Street S; Ruyle AM; Sloan AM
    J Neurosci Methods; 2005 Mar; 142(2):169-76. PubMed ID: 15698656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and fabrication of a polyimide-based microelectrode array: application in neural recording and repeatable electrolytic lesion in rat brain.
    Chen YY; Lai HY; Lin SH; Cho CW; Chao WH; Liao CH; Tsang S; Chen YF; Lin SY
    J Neurosci Methods; 2009 Aug; 182(1):6-16. PubMed ID: 19467262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microelectrode array fabrication by electrical discharge machining and chemical etching.
    Fofonoff TA; Martel SM; Hatsopoulos NG; Donoghue JP; Hunter IW
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):890-5. PubMed ID: 15188855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.