These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Archaeal RibL: a new FAD synthetase that is air sensitive. Mashhadi Z; Xu H; Grochowski LL; White RH Biochemistry; 2010 Oct; 49(40):8748-55. PubMed ID: 20822113 [TBL] [Abstract][Full Text] [Related]
3. Identification and characterization of the missing pyrimidine reductase in the plant riboflavin biosynthesis pathway. Hasnain G; Frelin O; Roje S; Ellens KW; Ali K; Guan JC; Garrett TJ; de Crécy-Lagard V; Gregory JF; McCarty DR; Hanson AD Plant Physiol; 2013 Jan; 161(1):48-56. PubMed ID: 23150645 [TBL] [Abstract][Full Text] [Related]
4. The FAD synthetase from the human pathogen Streptococcus pneumoniae: a bifunctional enzyme exhibiting activity-dependent redox requirements. Sebastián M; Lira-Navarrete E; Serrano A; Marcuello C; Velázquez-Campoy A; Lostao A; Hurtado-Guerrero R; Medina M; Martínez-Júlvez M Sci Rep; 2017 Aug; 7(1):7609. PubMed ID: 28790457 [TBL] [Abstract][Full Text] [Related]
5. An Arabidopsis FAD pyrophosphohydrolase, AtNUDX23, is involved in flavin homeostasis. Maruta T; Yoshimoto T; Ito D; Ogawa T; Tamoi M; Yoshimura K; Shigeoka S Plant Cell Physiol; 2012 Jun; 53(6):1106-16. PubMed ID: 22505691 [TBL] [Abstract][Full Text] [Related]
6. Cofactors and pathogens: Flavin mononucleotide and flavin adenine dinucleotide (FAD) biosynthesis by the FAD synthase from Brucella ovis. Moreno A; Taleb V; Sebastián M; Anoz-Carbonell E; Martínez-Júlvez M; Medina M IUBMB Life; 2022 Jul; 74(7):655-671. PubMed ID: 34813144 [TBL] [Abstract][Full Text] [Related]
7. Cloning of FAD synthetase gene from Corynebacterium ammoniagenes and its application to FAD and FMN production. Hagihara T; Fujio T; Aisaka K Appl Microbiol Biotechnol; 1995 Jan; 42(5):724-9. PubMed ID: 7765913 [TBL] [Abstract][Full Text] [Related]
8. The occurrence of riboflavin kinase and FAD synthetase ensures FAD synthesis in tobacco mitochondria and maintenance of cellular redox status. Giancaspero TA; Locato V; de Pinto MC; De Gara L; Barile M FEBS J; 2009 Jan; 276(1):219-31. PubMed ID: 19049514 [TBL] [Abstract][Full Text] [Related]
9. Structural insights into the synthesis of FMN in prokaryotic organisms. Herguedas B; Lans I; Sebastián M; Hermoso JA; Martínez-Júlvez M; Medina M Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2526-42. PubMed ID: 26627660 [TBL] [Abstract][Full Text] [Related]
10. A higher plant FAD synthetase is fused to an inactivated FAD pyrophosphatase. Lynch JH; Roje S J Biol Chem; 2022 Dec; 298(12):102626. PubMed ID: 36273586 [TBL] [Abstract][Full Text] [Related]
11. Role of key residues at the flavin mononucleotide (FMN):adenylyltransferase catalytic site of the bifunctional riboflavin kinase/flavin adenine dinucleotide (FAD) Synthetase from Corynebacterium ammoniagenes. Serrano A; Frago S; Velázquez-Campoy A; Medina M Int J Mol Sci; 2012 Nov; 13(11):14492-517. PubMed ID: 23203077 [TBL] [Abstract][Full Text] [Related]
12. A conserved domain in prokaryotic bifunctional FAD synthetases can potentially catalyze nucleotide transfer. Krupa A; Sandhya K; Srinivasan N; Jonnalagadda S Trends Biochem Sci; 2003 Jan; 28(1):9-12. PubMed ID: 12517446 [TBL] [Abstract][Full Text] [Related]
13. Heterologous Expression and Characterization of Flavinadenine Dinucleotide Synthetase from Zhou G; Pan Q; Hu Z; Qiu J; Yu Z Protein Pept Lett; 2021; 28(2):229-239. PubMed ID: 32640951 [TBL] [Abstract][Full Text] [Related]
14. An FMN hydrolase of the haloacid dehalogenase superfamily is active in plant chloroplasts. Rawat R; Sandoval FJ; Wei Z; Winkler R; Roje S J Biol Chem; 2011 Dec; 286(49):42091-42098. PubMed ID: 22002057 [TBL] [Abstract][Full Text] [Related]
15. An FMN hydrolase is fused to a riboflavin kinase homolog in plants. Sandoval FJ; Roje S J Biol Chem; 2005 Nov; 280(46):38337-45. PubMed ID: 16183635 [TBL] [Abstract][Full Text] [Related]
16. Eukaryotic peptide deformylases. Nuclear-encoded and chloroplast-targeted enzymes in Arabidopsis. Dirk LM; Williams MA; Houtz RL Plant Physiol; 2001 Sep; 127(1):97-107. PubMed ID: 11553738 [TBL] [Abstract][Full Text] [Related]
17. Recent Advances in Construction of the Efficient Producers of Riboflavin and Flavin Nucleotides (FMN, FAD) in the Yeast Candida famata. Fedorovych DV; Dmytruk KV; Sibirny AA Methods Mol Biol; 2021; 2280():15-30. PubMed ID: 33751426 [TBL] [Abstract][Full Text] [Related]
18. Truncated FAD synthetase for direct biocatalytic conversion of riboflavin and analogs to their corresponding flavin mononucleotides. Iamurri SM; Daugherty AB; Edmondson DE; Lutz S Protein Eng Des Sel; 2013 Dec; 26(12):791-5. PubMed ID: 24170887 [TBL] [Abstract][Full Text] [Related]
19. Proposed steady-state kinetic mechanism for Corynebacterium ammoniagenes FAD synthetase produced by Escherichia coli. Efimov I; Kuusk V; Zhang X; McIntire WS Biochemistry; 1998 Jul; 37(27):9716-23. PubMed ID: 9657684 [TBL] [Abstract][Full Text] [Related]
20. One-carbon metabolism in plants: characterization of a plastid serine hydroxymethyltransferase. Zhang Y; Sun K; Sandoval FJ; Santiago K; Roje S Biochem J; 2010 Aug; 430(1):97-105. PubMed ID: 20518745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]