These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 18713868)

  • 21. Molecular versus taxonomic rates of evolution in planktonic foraminifera.
    de Vargas C; Pawlowski J
    Mol Phylogenet Evol; 1998 Jun; 9(3):463-9. PubMed ID: 9667994
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fossils of parasites: what can the fossil record tell us about the evolution of parasitism?
    Leung TL
    Biol Rev Camb Philos Soc; 2017 Feb; 92(1):410-430. PubMed ID: 26538112
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rates of evolution: is there a conflict between neo-darwinian evolutionary theory and the fossil record?
    Williams BJ
    Am J Phys Anthropol; 1987 May; 73(1):99-109. PubMed ID: 3113260
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessing latitudinal gradients in speciation rates and biodiversity at the global scale.
    Allen AP; Gillooly JF
    Ecol Lett; 2006 Aug; 9(8):947-54. PubMed ID: 16913938
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Planktonic foraminifera genomic variations reflect paleoceanographic changes in the Arctic: evidence from sedimentary ancient DNA.
    Pawłowska J; Wollenburg JE; Zajączkowski M; Pawlowski J
    Sci Rep; 2020 Sep; 10(1):15102. PubMed ID: 32934321
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamics of competing species in a model of adaptive radiation and macroevolution.
    De Blasio BF; De Blasio FV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031916. PubMed ID: 16241491
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Geographical distribution of cryptic genetic types in the planktonic foraminifer Globigerinoides ruber.
    Aurahs R; Grimm GW; Hemleben V; Hemleben C; Kucera M
    Mol Ecol; 2009 Apr; 18(8):1692-706. PubMed ID: 19302352
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Does sex speed up evolutionary rate and increase biodiversity?
    Melián CJ; Alonso D; Allesina S; Condit RS; Etienne RS
    PLoS Comput Biol; 2012; 8(3):e1002414. PubMed ID: 22412362
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pattern and process in hominin brain size evolution are scale-dependent.
    Du A; Zipkin AM; Hatala KG; Renner E; Baker JL; Bianchi S; Bernal KH; Wood BA
    Proc Biol Sci; 2018 Feb; 285(1873):. PubMed ID: 29467267
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The apparent exponential radiation of Phanerozoic land vertebrates is an artefact of spatial sampling biases.
    Close RA; Benson RBJ; Alroy J; Carrano MT; Cleary TJ; Dunne EM; Mannion PD; Uhen MD; Butler RJ
    Proc Biol Sci; 2020 Apr; 287(1924):20200372. PubMed ID: 32259471
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cryptic evolution: does environmental deterioration have a genetic basis?
    Hadfield JD; Wilson AJ; Kruuk LE
    Genetics; 2011 Apr; 187(4):1099-113. PubMed ID: 21242534
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Trait-Fitness Associations via Fecundity and Competition in a Two-Million-Year-Long Fossil Record.
    Liow LH; Porto A; Di Martino E
    Am Nat; 2024 Sep; 204(3):258-273. PubMed ID: 39179234
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic monitoring of open ocean biodiversity: An evaluation of DNA metabarcoding for processing continuous plankton recorder samples.
    Deagle BE; Clarke LJ; Kitchener JA; Polanowski AM; Davidson AT
    Mol Ecol Resour; 2018 May; 18(3):391-406. PubMed ID: 29171158
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Climate cooling and clade competition likely drove the decline of lamniform sharks.
    Condamine FL; Romieu J; Guinot G
    Proc Natl Acad Sci U S A; 2019 Oct; 116(41):20584-20590. PubMed ID: 31548392
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Trait-fitness associations do not predict within-species phenotypic evolution over 2 million years.
    Di Martino E; Liow LH
    Proc Biol Sci; 2021 Jan; 288(1943):20202047. PubMed ID: 33468005
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolutionary diversification of reef corals: a comparison of the molecular and fossil records.
    Simpson C; Kiessling W; Mewis H; Baron-Szabo RC; Müller J
    Evolution; 2011 Nov; 65(11):3274-84. PubMed ID: 22023591
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrating fossils with molecular phylogenies improves inference of trait evolution.
    Slater GJ; Harmon LJ; Alfaro ME
    Evolution; 2012 Dec; 66(12):3931-44. PubMed ID: 23206147
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phylogeography in the northern Andes: complex history and cryptic diversity in a cloud forest frog, Pristimantis w-nigrum (Craugastoridae).
    Kieswetter CM; Schneider CJ
    Mol Phylogenet Evol; 2013 Dec; 69(3):417-29. PubMed ID: 23978627
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model.
    Yasuhara M; Tittensor DP; Hillebrand H; Worm B
    Biol Rev Camb Philos Soc; 2017 Feb; 92(1):199-215. PubMed ID: 26420174
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The impact of shifts in marine biodiversity hotspots on patterns of range evolution: Evidence from the Holocentridae (squirrelfishes and soldierfishes).
    Dornburg A; Moore J; Beaulieu JM; Eytan RI; Near TJ
    Evolution; 2015 Jan; 69(1):146-61. PubMed ID: 25407924
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.