These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Successful amplification of extremely GC-rich promoter regions using a novel 'slowdown PCR' technique. Bachmann HS; Siffert W; Frey UH Pharmacogenetics; 2003 Dec; 13(12):759-66. PubMed ID: 14646694 [TBL] [Abstract][Full Text] [Related]
3. A primer design strategy for PCR amplification of GC-rich DNA sequences. Li LY; Li Q; Yu YH; Zhong M; Yang L; Wu QH; Qiu YR; Luo SQ Clin Biochem; 2011 Jun; 44(8-9):692-8. PubMed ID: 21315705 [TBL] [Abstract][Full Text] [Related]
4. Multiple heat pulses during PCR extension enabling amplification of GC-rich sequences and reducing amplification bias. Orpana AK; Ho TH; Stenman J Anal Chem; 2012 Feb; 84(4):2081-7. PubMed ID: 22220596 [TBL] [Abstract][Full Text] [Related]
8. A new approach to touch down method using betaine as co-solvent for increased specificity and intensity of GC rich gene amplification. Pratyush DD; Tiwari S; Kumar A; Singh SK Gene; 2012 Apr; 497(2):269-72. PubMed ID: 22306261 [TBL] [Abstract][Full Text] [Related]
9. A rapid and simple transcriptional sequencing method for GC-rich DNA regions. Izawa M; Kitamur N; Odake N; Maki F; Kanehira K; Nemoto H; Yamaguchi M; Yamashita A; Sasaki N; Hattori M; Kanayama S; Yoned Y Jpn J Vet Res; 2006 Feb; 53(3-4):159-68. PubMed ID: 16544936 [TBL] [Abstract][Full Text] [Related]
10. Efficient amplification of genes involved in microbial secondary metabolism by an improved genome walking method. Deng J; Wei M; Yu B; Chen Y Appl Microbiol Biotechnol; 2010 Jun; 87(2):757-64. PubMed ID: 20376630 [TBL] [Abstract][Full Text] [Related]
11. Optimisation of the polymerase chain reaction. Harris S; Jones DB Br J Biomed Sci; 1997 Sep; 54(3):166-73. PubMed ID: 9499593 [TBL] [Abstract][Full Text] [Related]
12. Amplification of GC-rich genes by following a combination strategy of primer design, enhancers and modified PCR cycle conditions. Sahdev S; Saini S; Tiwari P; Saxena S; Singh Saini K Mol Cell Probes; 2007 Aug; 21(4):303-7. PubMed ID: 17490855 [TBL] [Abstract][Full Text] [Related]
13. [Influence of reaction optimization on the results of PCR amplification of Panton-Valentine leukocidin genes among Staphylococcus aureus isolates]. Karahan ZC; Dolapçi I; Tekeli A Mikrobiyol Bul; 2009 Oct; 43(4):519-28. PubMed ID: 20084904 [TBL] [Abstract][Full Text] [Related]
14. Differentiation of bacterial strains by thermal gradient gel electrophoresis using non-GC-clamped PCR primers for the 16S-23S rDNA intergenic spacer region. Yasuda M; Shiaris MP FEMS Microbiol Lett; 2005 Feb; 243(1):235-42. PubMed ID: 15668024 [TBL] [Abstract][Full Text] [Related]
15. GC-rich template amplification by inverse PCR. DNA polymerase and solvent effects. Moreau A; Wang DS; Forget S; Duez C; Dusart J Methods Mol Biol; 2002; 192():75-80. PubMed ID: 12494639 [No Abstract] [Full Text] [Related]
16. Minimum GC-rich sequences for overlap extension PCR and primer annealing. Nakamura M; Suzuki A; Hoshida H; Akada R Methods Mol Biol; 2014; 1116():165-81. PubMed ID: 24395364 [TBL] [Abstract][Full Text] [Related]
17. Parallel DNA amplification by convective polymerase chain reaction with various annealing temperatures on a thermal gradient device. Zhang C; Xing D Anal Biochem; 2009 Apr; 387(1):102-12. PubMed ID: 19454245 [TBL] [Abstract][Full Text] [Related]
18. DOP-PCR amplification of probe DNA for whole-mount FISH in Drosophila. Dernburg AF Cold Spring Harb Protoc; 2012 Mar; 2012(3):380-4. PubMed ID: 22383635 [TBL] [Abstract][Full Text] [Related]