These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 18714993)

  • 1. Transitioning enantioselective indicator displacement assays for alpha-amino acids to protocols amenable to high-throughput screening.
    Leung D; Anslyn EV
    J Am Chem Soc; 2008 Sep; 130(37):12328-33. PubMed ID: 18714993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using enantioselective indicator displacement assays to determine the enantiomeric excess of alpha-amino acids.
    Leung D; Folmer-Andersen JF; Lynch VM; Anslyn EV
    J Am Chem Soc; 2008 Sep; 130(37):12318-27. PubMed ID: 18714996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid optical methods for enantiomeric excess analysis: from enantioselective indicator displacement assays to exciton-coupled circular dichroism.
    Jo HH; Lin CY; Anslyn EV
    Acc Chem Res; 2014 Jul; 47(7):2212-21. PubMed ID: 24892802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput screening of identity, enantiomeric excess, and concentration using MLCT transitions in CD spectroscopy.
    Nieto S; Lynch VM; Anslyn EV; Kim H; Chin J
    J Am Chem Soc; 2008 Jul; 130(29):9232-3. PubMed ID: 18572934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of enantiomeric excess and concentration of unprotected amino acids, amines, amino alcohols, and carboxylic acids by competitive binding assays with a chiral scandium complex.
    Mei X; Wolf C
    J Am Chem Soc; 2006 Oct; 128(41):13326-7. PubMed ID: 17031923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two methods for the determination of enantiomeric excess and concentration of a chiral sample with a single spectroscopic measurement.
    Zhu L; Shabbir SH; Anslyn EV
    Chemistry; 2007; 13(1):99-104. PubMed ID: 17066491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular recognition and self-assembly special feature: A general protocol for creating high-throughput screening assays for reaction yield and enantiomeric excess applied to hydrobenzoin.
    Shabbir SH; Regan CJ; Anslyn EV
    Proc Natl Acad Sci U S A; 2009 Jun; 106(26):10487-92. PubMed ID: 19332790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colorimetric enantiodiscrimination of alpha-amino acids in protic media.
    Folmer-Andersen JF; Lynch VM; Anslyn EV
    J Am Chem Soc; 2005 Jun; 127(22):7986-7. PubMed ID: 15926802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of enantiomeric excess in a combinatorial library of catalytic enantioselective reactions.
    Aires-de-Sousa J; Gasteiger J
    J Comb Chem; 2005; 7(2):298-301. PubMed ID: 15762759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chiral amine enantiomeric excess determination using self-assembled octahedral Fe(II)-imine complexes.
    Dragna JM; Gade AM; Tran L; Lynch VM; Anslyn EV
    Chirality; 2015 Apr; 27(4):294-8. PubMed ID: 25664936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chiral analysis by electrospray ionization mass spectrometry/mass spectrometry. 2. Determination of enantiomeric excess of amino acids.
    Yao ZP; Wan TS; Kwong KP; Che CT
    Anal Chem; 2000 Nov; 72(21):5394-401. PubMed ID: 11080892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral recognition: design and preparation of chiral stationary phases using selectors derived from ugi multicomponent condensation reactions and a combinatorial approach.
    Brahmachary E; Ling FH; Svec F; Fréchet JM
    J Comb Chem; 2003; 5(4):441-50. PubMed ID: 12857112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The determination of enantiomeric excess of valine by ODESSA solid-state NMR experiment.
    Tadeusiak EJ; Ciesielski W; Olejniczak S
    Magn Reson Chem; 2006 Oct; 44(10):905-8. PubMed ID: 16835889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A facile circular dichroism protocol for rapid determination of enantiomeric excess and concentration of chiral primary amines.
    Nieto S; Dragna JM; Anslyn EV
    Chemistry; 2010 Jan; 16(1):227-32. PubMed ID: 19946914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput screening of α-chiral-primary amines to determine yield and enantiomeric excess.
    Moor SR; Howard JR; Herrera BT; Anslyn EV
    Tetrahedron; 2021 Aug; 94():. PubMed ID: 34744194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enantioselective recognition of carboxylates: a receptor derived from alpha-aminoxy acids functions as a chiral shift reagent for carboxylic acids.
    Yang D; Li X; Fan YF; Zhang DW
    J Am Chem Soc; 2005 Jun; 127(22):7996-7. PubMed ID: 15926807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pattern-based recognition for determination of enantiomeric excess, using chiral auxiliary induced chemical shift perturbation NMR.
    Lei X; Liu L; Chen X; Yu X; Ding L; Zhang A
    Org Lett; 2010 Jun; 12(11):2540-3. PubMed ID: 20441202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The first highly enantioselective homogeneously catalyzed asymmetric reductive amination: synthesis of alpha-N-benzylamino acids.
    Kadyrov R; Riermeier TH; Dingerdissen U; Tararov V; Börner A
    J Org Chem; 2003 May; 68(10):4067-70. PubMed ID: 12737592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guidelines in implementing enantioselective indicator-displacement assays for alpha-hydroxycarboxylates and diols.
    Zhu L; Zhong Z; Anslyn EV
    J Am Chem Soc; 2005 Mar; 127(12):4260-9. PubMed ID: 15783208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A long-range chiral relay via tertiary amide group in asymmetric catalysis: new amino acid-derived N,P-ligands for copper-catalysed conjugate addition.
    Malkov AV; Hand JB; Kocovský P
    Chem Commun (Camb); 2003 Aug; (15):1948-9. PubMed ID: 12932047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.