BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 18715007)

  • 1. SnO2 quantum dots and quantum wires: controllable synthesis, self-assembled 2D architectures, and gas-sensing properties.
    Xu X; Zhuang J; Wang X
    J Am Chem Soc; 2008 Sep; 130(37):12527-35. PubMed ID: 18715007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrathin SnO2 nanorods: template- and surfactant-free solution phase synthesis, growth mechanism, optical, gas-sensing, and surface adsorption properties.
    Xi G; Ye J
    Inorg Chem; 2010 Mar; 49(5):2302-9. PubMed ID: 20088491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of confinement effects in ZnO quantum dots.
    Haranath D; Sahai S; Joshi AG; Gupta BK; Shanker V
    Nanotechnology; 2009 Oct; 20(42):425701. PubMed ID: 19779241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cadmium selenide quantum wires and the transition from 3D to 2D confinement.
    Yu H; Li J; Loomis RA; Gibbons PC; Wang LW; Buhro WE
    J Am Chem Soc; 2003 Dec; 125(52):16168-9. PubMed ID: 14692740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colloidal GaAs quantum wires: solution-liquid-solid synthesis and quantum-confinement studies.
    Dong A; Yu H; Wang F; Buhro WE
    J Am Chem Soc; 2008 May; 130(18):5954-61. PubMed ID: 18393420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new route to self-assembled tin dioxide nanospheres: fabrication and characterization.
    Deng Z; Peng B; Chen D; Tang F; Muscat AJ
    Langmuir; 2008 Oct; 24(19):11089-95. PubMed ID: 18763816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the rod-wire transition length in colloidal indium phosphide quantum rods.
    Wang F; Buhro WE
    J Am Chem Soc; 2007 Nov; 129(46):14381-7. PubMed ID: 17967017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel and green process for the production of tin oxide quantum dots and its application as a photocatalyst for the degradation of dyes from aqueous phase.
    Bhattacharjee A; Ahmaruzzaman M
    J Colloid Interface Sci; 2015 Jun; 448():130-9. PubMed ID: 25725397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atypical quantum confinement effect in silicon nanowires.
    Sorokin PB; Avramov PV; Chernozatonskii LA; Fedorov DG; Ovchinnikov SG
    J Phys Chem A; 2008 Oct; 112(40):9955-64. PubMed ID: 18785695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions.
    Wang Y; Jiang X; Xia Y
    J Am Chem Soc; 2003 Dec; 125(52):16176-7. PubMed ID: 14692744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoluminescence properties of highly dispersed ZnO quantum dots in polyvinylpyrrolidone nanotubes prepared by a single capillary electrospinning.
    Li XH; Shao CL; Liu YC; Chu XY; Wang CH; Zhang BX
    J Chem Phys; 2008 Sep; 129(11):114708. PubMed ID: 19044981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of tunable silicon q-dots through ultrasound.
    Troia A; Giovannozzi A; Amato G
    Ultrason Sonochem; 2009 Apr; 16(4):448-51. PubMed ID: 19201244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elementary building blocks of self-assembled peptide nanotubes.
    Amdursky N; Molotskii M; Gazit E; Rosenman G
    J Am Chem Soc; 2010 Nov; 132(44):15632-6. PubMed ID: 20958029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective synthesis of CdTe and high luminescence CdTe/CdS quantum dots: the effect of ligands.
    Liu YF; Yu JS
    J Colloid Interface Sci; 2009 May; 333(2):690-8. PubMed ID: 19215940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sub-wavelength waveguide properties of 1D and surface-functionalized SnO
    Bonu V; Sahu BK; Das A; Amirthapandian S; Dhara S; Barshilia HC
    Beilstein J Nanotechnol; 2019; 10():379-388. PubMed ID: 30800577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of InAsN quantum dots by transmission electron microscopy and photoluminescence.
    Hsu CC; Hsu RQ; Wu YH; Chi TW; Chiang CH; Chen JF; Chang MN
    Ultramicroscopy; 2008 Oct; 108(11):1495-9. PubMed ID: 18768262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density functional theory study on the structural and electronic properties of low index rutile surfaces for TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 composite systems.
    Beltrán A; Andrés J; Sambrano JR; Longo E
    J Phys Chem A; 2008 Sep; 112(38):8943-52. PubMed ID: 18680263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth of Cu2S ultrathin nanowires in a binary surfactant solvent.
    Liu Z; Xu D; Liang J; Shen J; Zhang S; Qian Y
    J Phys Chem B; 2005 Jun; 109(21):10699-704. PubMed ID: 16852299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SnO₂@CdS nanowire-quantum dots heterostructures: tailoring optical properties of SnO₂ for enhanced photodetection and photocatalysis.
    Pan J; Li J; Yan Z; Zhou B; Wu H; Xiong X
    Nanoscale; 2013 Apr; 5(7):3022-9. PubMed ID: 23463463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dense arrays of ordered pyramidal quantum dots with narrow linewidth photoluminescence spectra.
    Surrente A; Gallo P; Felici M; Dwir B; Rudra A; Kapon E
    Nanotechnology; 2009 Oct; 20(41):415205. PubMed ID: 19762950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.