These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 18715007)

  • 21. An insight into the origin of room-temperature ferromagnetism in SnO
    Manikandan D; Boukhvalov DW; Amirthapandian S; Zhidkov IS; Kukharenko AI; Cholakh SO; Kurmaev EZ; Murugan R
    Phys Chem Chem Phys; 2018 Feb; 20(9):6500-6514. PubMed ID: 29445813
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of cadmium telluride quantum wires and the similarity of their effective band gaps to those of equidiameter cadmium telluride quantum dots.
    Sun J; Wang LW; Buhro WE
    J Am Chem Soc; 2008 Jun; 130(25):7997-8005. PubMed ID: 18507463
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photoluminescence properties of CdS and CdMnS quantum dots prepared by a reverse-micelle method.
    Kim D; Miyamoto M; Nakayama M
    J Electron Microsc (Tokyo); 2005; 54 Suppl 1():i31-4. PubMed ID: 16157638
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tailoring the self-assembled structures and photonic properties of organic nanomaterials.
    Yao W; Zhao YS
    Nanoscale; 2014 Apr; 6(7):3467-73. PubMed ID: 24464215
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A simple route to growth of silicon nanowires.
    Pan H; Ni Z; Poh C; Feng YP; Lin J; Shen Z
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5787-90. PubMed ID: 19198306
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photoluminescence of a freely suspended monolayer of quantum dots encapsulated into layer-by-layer films.
    Zimnitsky D; Jiang C; Xu J; Lin Z; Zhang L; Tsukruk VV
    Langmuir; 2007 Sep; 23(20):10176-83. PubMed ID: 17725371
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Photoluminescence investigation of InAs bimodal self-assembled quantum dots state filling].
    Jia GZ; Yao JH; Zhang CL; Shu Q; Liu RB; Ye XL; Wang ZG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Nov; 27(11):2178-81. PubMed ID: 18260388
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [The effect of surface structure on the photoluminescence of SnO2 nanoparticles in hydrosols and organosols].
    Cao L; Wan H; Wang S; Huo L; Xi S
    Guang Pu Xue Yu Guang Pu Fen Xi; 1999 Oct; 19(5):651-4. PubMed ID: 15822257
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Strong electronic coupling in two-dimensional assemblies of colloidal PbSe quantum dots.
    Williams KJ; Tisdale WA; Leschkies KS; Haugstad G; Norris DJ; Aydil ES; Zhu XY
    ACS Nano; 2009 Jun; 3(6):1532-8. PubMed ID: 19456114
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Luminescence tuning of amorphous Si quantum dots prepared by plasma-enhanced chemical vapor deposition.
    Kang SM; Yoon SG; Kim SW; Yoon DH
    J Nanosci Nanotechnol; 2008 May; 8(5):2540-3. PubMed ID: 18572680
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photoluminescence of oxygen vacancies and hydroxyl group surface functionalized SnO2 nanoparticles.
    Bonu V; Das A; Amirthapandian S; Dhara S; Tyagi AK
    Phys Chem Chem Phys; 2015 Apr; 17(15):9794-801. PubMed ID: 25774472
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of some critical parameters of buffer conditions for the development of quantum dots-based optical sensors.
    Yuan J; Guo W; Wang E
    Anal Chim Acta; 2008 Dec; 630(2):174-80. PubMed ID: 19012829
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Free standing luminescent silicon quantum dots: evidence of quantum confinement and defect related transitions.
    Ray M; Hossain SM; Klie RF; Banerjee K; Ghosh S
    Nanotechnology; 2010 Dec; 21(50):505602. PubMed ID: 21098931
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shape-dependent confinement in ultrasmall zero-, one-, and two-dimensional PbS nanostructures.
    Acharya S; Sarma DD; Golan Y; Sengupta S; Ariga K
    J Am Chem Soc; 2009 Aug; 131(32):11282-3. PubMed ID: 19722640
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantum confinement and electroluminescence in ultrathin silicon nanowires fabricated by a maskless etching technique.
    Irrera A; Artoni P; Iacona F; Pecora EF; Franzò G; Galli M; Fazio B; Boninelli S; Priolo F
    Nanotechnology; 2012 Feb; 23(7):075204. PubMed ID: 22273546
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-organized formation and self-repair of a two-dimensional nanoarray of Ge quantum dots epitaxially grown on ultrathin SiO2-covered Si substrates.
    Nakamura Y; Murayama A; Watanabe R; Iyoda T; Ichikawa M
    Nanotechnology; 2010 Mar; 21(9):095305. PubMed ID: 20130347
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Irradiated Graphene Loaded with SnO₂ Quantum Dots for Energy Storage.
    Huang R; Wang L; Zhang Q; Chen Z; Li Z; Pan D; Zhao B; Wu M; Wu CM; Shek CH
    ACS Nano; 2015 Nov; 9(11):11351-61. PubMed ID: 26434377
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced quantum confinement due to nonuniform composition in alloy quantum dots.
    Hossain MZ; Medhekar NV; Shenoy VB; Johnson HT
    Nanotechnology; 2010 Mar; 21(9):095401. PubMed ID: 20124666
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of highly fluorescent glutathione-capped Zn(x)Hg(1-x)Se quantum dot and its application for sensing copper ion.
    Liu FC; Chen YM; Lin JH; Tseng WL
    J Colloid Interface Sci; 2009 Sep; 337(2):414-9. PubMed ID: 19524936
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ordering of epitaxial quantum dots on nanomembranes.
    Vastola G; Shenoy VB; Zhang YW
    ACS Nano; 2012 Apr; 6(4):3377-82. PubMed ID: 22436001
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.