BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 18715064)

  • 1. Calculation of the transport and relaxation properties of methane. I. Shear viscosity, viscomagnetic effects, and self-diffusion.
    Hellmann R; Bich E; Vogel E; Dickinson AS; Vesovic V
    J Chem Phys; 2008 Aug; 129(6):064302. PubMed ID: 18715064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculation of the transport and relaxation properties of methane. II. Thermal conductivity, thermomagnetic effects, volume viscosity, and nuclear-spin relaxation.
    Hellmann R; Bich E; Vogel E; Dickinson AS; Vesovic V
    J Chem Phys; 2009 Mar; 130(12):124309. PubMed ID: 19334832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculation of the transport and relaxation properties of dilute water vapor.
    Hellmann R; Bich E; Vogel E; Dickinson AS; Vesovic V
    J Chem Phys; 2009 Jul; 131(1):014303. PubMed ID: 19586101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation of the transport properties of carbon dioxide. II. Thermal conductivity and thermomagnetic effects.
    Bock S; Bich E; Vogel E; Dickinson AS; Vesovic V
    J Chem Phys; 2004 May; 120(17):7987-97. PubMed ID: 15267716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculation of the transport properties of carbon dioxide. III. Volume viscosity, depolarized Rayleigh scattering, and nuclear spin relaxation.
    Bock S; Bich E; Vogel E; Dickinson AS; Vesovic V
    J Chem Phys; 2004 Sep; 121(9):4117-22. PubMed ID: 15332957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modified free volume theory of self-diffusion and molecular theory of shear viscosity of liquid carbon dioxide.
    Nasrabad AE; Laghaei R; Eu BC
    J Phys Chem B; 2005 Apr; 109(16):8171-9. PubMed ID: 16851955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculation of the transport properties of a dilute gas consisting of Lennard-Jones chains.
    Hellmann R; Riesco N; Vesovic V
    J Chem Phys; 2013 Feb; 138(8):084309. PubMed ID: 23464153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Centroid molecular dynamics approach to the transport properties of liquid para-hydrogen over the wide temperature range.
    Yonetani Y; Kinugawa K
    J Chem Phys; 2004 Jun; 120(22):10624-33. PubMed ID: 15268088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy of recent potential energy surfaces for the He-N2 interaction. II. Molecular beam scattering and bulk gas relaxation phenomena.
    Stoker JS; Dham AK; McCourt FR; Dickinson AS
    J Chem Phys; 2008 Jun; 128(21):214309. PubMed ID: 18537424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computation of the properties of liquid neon, methane, and gas helium at low temperature by the Feynman-Hibbs approach.
    Tchouar N; Ould-Kaddour F; Levesque D
    J Chem Phys; 2004 Oct; 121(15):7326-31. PubMed ID: 15473802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab initio intermolecular potential energy surface and thermophysical properties of hydrogen sulfide.
    Hellmann R; Bich E; Vogel E; Vesovic V
    Phys Chem Chem Phys; 2011 Aug; 13(30):13749-58. PubMed ID: 21720616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trajectory dynamics study of the Ar + CH4 dissociation reaction at high temperatures: the importance of zero-point-energy effects.
    Marques JM; Martínez-Núñez E; Fernandez-Ramos A; Vazquez SA
    J Phys Chem A; 2005 Jun; 109(24):5415-23. PubMed ID: 16839068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of the anisotropic united atoms intermolecular potential for n-alkanes: improvement of transport properties.
    Nieto-Draghi C; Ungerer P; Rousseau B
    J Chem Phys; 2006 Jul; 125(4):44517. PubMed ID: 16942166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular simulation of the shear viscosity and the self-diffusion coefficient of mercury along the vapor-liquid coexistence curve.
    Raabe G; Todd BD; Sadus RJ
    J Chem Phys; 2005 Jul; 123(3):34511. PubMed ID: 16080748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved classical united-atom force field for imidazolium-based ionic liquids: tetrafluoroborate, hexafluorophosphate, methylsulfate, trifluoromethylsulfonate, acetate, trifluoroacetate, and bis(trifluoromethylsulfonyl)amide.
    Zhong X; Liu Z; Cao D
    J Phys Chem B; 2011 Aug; 115(33):10027-40. PubMed ID: 21751818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio intermolecular potential energy surface and second pressure virial coefficients of methane.
    Hellmann R; Bich E; Vogel E
    J Chem Phys; 2008 Jun; 128(21):214303. PubMed ID: 18537418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of a magnetic field on the viscosity of a dilute gas consisting of linear molecules.
    Hellmann R; Vesovic V
    J Chem Phys; 2015 Dec; 143(21):214303. PubMed ID: 26646878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generic van der Waals equation of state, modified free volume theory of diffusion, and viscosity of simple liquids.
    Laghaei R; Nasrabad AE; Eu BC
    J Phys Chem B; 2005 Mar; 109(12):5873-83. PubMed ID: 16851639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of shear viscosity of molecular nitrogen (N2): molecular dynamic hard rotor methodology and the results.
    Strak P; Krukowski S
    J Phys Chem B; 2011 Apr; 115(15):4359-68. PubMed ID: 21438507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linearized semiclassical initial value time correlation functions using the thermal Gaussian approximation: applications to condensed phase systems.
    Liu J; Miller WH
    J Chem Phys; 2007 Sep; 127(11):114506. PubMed ID: 17887856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.