These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 18715105)

  • 1. Cytoskeleton mediated effective elastic properties of model red blood cell membranes.
    Zhang R; Brown FL
    J Chem Phys; 2008 Aug; 129(6):065101. PubMed ID: 18715105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic simulations of membranes with cytoskeletal interactions.
    Lin LC; Brown FL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011910. PubMed ID: 16090004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deforming biological membranes: how the cytoskeleton affects a polymerizing fiber.
    Daniels DR; Wang JC; Briehl RW; Turner MS
    J Chem Phys; 2006 Jan; 124(2):024903. PubMed ID: 16422644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insights into red cell network structure, elasticity, and spectrin unfolding--a current review.
    Discher DE; Carl P
    Cell Mol Biol Lett; 2001; 6(3):593-606. PubMed ID: 11598637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytoskeleton confinement and tension of red blood cell membranes.
    Gov N; Zilman AG; Safran S
    Phys Rev Lett; 2003 Jun; 90(22):228101. PubMed ID: 12857343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erythrocyte membrane model with explicit description of the lipid bilayer and the spectrin network.
    Li H; Lykotrafitis G
    Biophys J; 2014 Aug; 107(3):642-653. PubMed ID: 25099803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A unified biochemical and continuum mechanical red blood cell membrane bilayer--couple model.
    Rana AP; Rana SP; Rana JP
    Indian J Physiol Pharmacol; 2004 Oct; 48(4):409-18. PubMed ID: 15907049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluctuation spectrum of fluid membranes coupled to an elastic meshwork: jump of the effective surface tension at the mesh size.
    Fournier JB; Lacoste D; Raphaël E
    Phys Rev Lett; 2004 Jan; 92(1):018102. PubMed ID: 14754023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image-based model of the spectrin cytoskeleton for red blood cell simulation.
    Fai TG; Leo-Macias A; Stokes DL; Peskin CS
    PLoS Comput Biol; 2017 Oct; 13(10):e1005790. PubMed ID: 28991926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectrin organization and dynamics: new insights.
    Chakrabarti A; Kelkar DA; Chattopadhyay A
    Biosci Rep; 2006 Dec; 26(6):369-86. PubMed ID: 17029004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-component coarse-grained molecular-dynamics model for the human erythrocyte membrane.
    Li H; Lykotrafitis G
    Biophys J; 2012 Jan; 102(1):75-84. PubMed ID: 22225800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The membrane skeleton of erythrocytes. A percolation model.
    Saxton MJ
    Biophys J; 1990 Jun; 57(6):1167-77. PubMed ID: 2393702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active elastic network: cytoskeleton of the red blood cell.
    Gov NS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011921. PubMed ID: 17358198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New insights into function of red cell membrane proteins and their interaction with spectrin-based membrane skeleton.
    Mohandas N; An X
    Transfus Clin Biol; 2006; 13(1-2):29-30. PubMed ID: 16581279
    [No Abstract]   [Full Text] [Related]  

  • 15. Continuous membrane-cytoskeleton adhesion requires continuous accommodation to lipid and cytoskeleton dynamics.
    Sheetz MP; Sable JE; Döbereiner HG
    Annu Rev Biophys Biomol Struct; 2006; 35():417-34. PubMed ID: 16689643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer simulation of a model network for the erythrocyte cytoskeleton.
    Boal DH
    Biophys J; 1994 Aug; 67(2):521-9. PubMed ID: 7948670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The spectrin network as a barrier to lateral diffusion in erythrocytes. A percolation analysis.
    Saxton MJ
    Biophys J; 1989 Jan; 55(1):21-8. PubMed ID: 2930822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unique elastic properties of the spectrin tetramer as revealed by multiscale coarse-grained modeling.
    Mirijanian DT; Voth GA
    Proc Natl Acad Sci U S A; 2008 Jan; 105(4):1204-8. PubMed ID: 18202182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brownian dynamics in Fourier space: membrane simulations over long length and time scales.
    Lin LC; Brown FL
    Phys Rev Lett; 2004 Dec; 93(25):256001. PubMed ID: 15697914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Barrier-free paths of directed protein motion in the erythrocyte plasma membrane.
    Boal DH; Boey SK
    Biophys J; 1995 Aug; 69(2):372-9. PubMed ID: 8527650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.