These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Interphase cytogenetics of prostatic tumor progression: specific chromosomal abnormalities are involved in metastasis to the bone. Alers JC; Krijtenburg PJ; Rosenberg C; Hop WC; Verkerk AM; Schröder FH; van der Kwast TH; Bosman FT; van Dekken H Lab Invest; 1997 Nov; 77(5):437-48. PubMed ID: 9389787 [TBL] [Abstract][Full Text] [Related]
3. Frequency and pattern of karyotypic abnormalities in human prostate cancer. Brothman AR; Peehl DM; Patel AM; McNeal JE Cancer Res; 1990 Jun; 50(12):3795-803. PubMed ID: 2340524 [TBL] [Abstract][Full Text] [Related]
4. Chromosomal changes associated with progression of the Dunning R-3327 rat prostatic adenocarcinoma system. Wake N; Isaacs J; Sandberg AA Cancer Res; 1982 Oct; 42(10):4131-42. PubMed ID: 7105009 [TBL] [Abstract][Full Text] [Related]
5. Cytogenetic and ploidy analysis of prostatic adenocarcinoma. Perlman EJ; Epstein JI; Long PP; Pizov G; Griffin CA Mod Pathol; 1993 May; 6(3):348-52. PubMed ID: 8346183 [TBL] [Abstract][Full Text] [Related]
6. Recurrent cytogenetic aberrations in human ovarian carcinomas. Kiechle-Schwarz M; Bauknecht T; Schmidt J; Walz L; Pfleiderer A Cancer Detect Prev; 1995; 19(3):234-43. PubMed ID: 7750111 [TBL] [Abstract][Full Text] [Related]
7. Heat shock protein expression independently predicts clinical outcome in prostate cancer. Cornford PA; Dodson AR; Parsons KF; Desmond AD; Woolfenden A; Fordham M; Neoptolemos JP; Ke Y; Foster CS Cancer Res; 2000 Dec; 60(24):7099-105. PubMed ID: 11156417 [TBL] [Abstract][Full Text] [Related]
8. Comparative genomic hybridization and molecular cytogenetic characterization of two prostate cancer xenografts. Williams BJ; Jones E; Kozlowski JM; Vessella R; Brothman AR Genes Chromosomes Cancer; 1997 Apr; 18(4):299-304. PubMed ID: 9087570 [TBL] [Abstract][Full Text] [Related]
9. Genetic alterations in untreated metastases and androgen-independent prostate cancer detected by comparative genomic hybridization and allelotyping. Cher ML; Bova GS; Moore DH; Small EJ; Carroll PR; Pin SS; Epstein JI; Isaacs WB; Jensen RH Cancer Res; 1996 Jul; 56(13):3091-102. PubMed ID: 8674067 [TBL] [Abstract][Full Text] [Related]
10. Chromosomal analysis of human prostatic adenocarcinoma cell lines. Ohnuki Y; Marnell MM; Babcock MS; Lechner JF; Kaighn ME Cancer Res; 1980 Mar; 40(3):524-34. PubMed ID: 7471073 [TBL] [Abstract][Full Text] [Related]
11. Loss of p53 and c-myc overrepresentation in stage T(2-3)N(1-3)M(0) prostate cancer are potential markers for cancer progression. Qian J; Hirasawa K; Bostwick DG; Bergstralh EJ; Slezak JM; Anderl KL; Borell TJ; Lieber MM; Jenkins RB Mod Pathol; 2002 Jan; 15(1):35-44. PubMed ID: 11796839 [TBL] [Abstract][Full Text] [Related]
12. Chromosomal abnormalities of adenocarcinoma of the pancreas: identifying early and late changes. Kowalski J; Morsberger LA; Blackford A; Hawkins A; Yeo CJ; Hruban RH; Griffin CA Cancer Genet Cytogenet; 2007 Oct; 178(1):26-35. PubMed ID: 17889705 [TBL] [Abstract][Full Text] [Related]
13. Detection of chromosomal anomalies and c-myc gene amplification in the cribriform pattern of prostatic intraepithelial neoplasia and carcinoma by fluorescence in situ hybridization. Qian J; Jenkins RB; Bostwick DG Mod Pathol; 1997 Nov; 10(11):1113-9. PubMed ID: 9388062 [TBL] [Abstract][Full Text] [Related]
14. A widely expressed transcription factor with multiple DNA sequence specificity, CTCF, is localized at chromosome segment 16q22.1 within one of the smallest regions of overlap for common deletions in breast and prostate cancers. Filippova GN; Lindblom A; Meincke LJ; Klenova EM; Neiman PE; Collins SJ; Doggett NA; Lobanenkov VV Genes Chromosomes Cancer; 1998 May; 22(1):26-36. PubMed ID: 9591631 [TBL] [Abstract][Full Text] [Related]
15. Nonrandom abnormalities involving chromosome 1 and Harvey-ras-1 alleles in rat mammary tumor progression. Aldaz CM; Chen A; Gollahon LS; Russo J; Zappler K Cancer Res; 1992 Sep; 52(17):4791-8. PubMed ID: 1511443 [TBL] [Abstract][Full Text] [Related]
16. Quantitative and qualitative AgNORs rates of prostate cancer on needle core biopsies: a multicentric study. Botticelli AR; Marandola P; Jallous H; Vicini D; Migaldi M; Speroni A; Mirando P Pathologica; 1995 Dec; 87(6):624-30. PubMed ID: 8927421 [TBL] [Abstract][Full Text] [Related]
17. Genetic aberrations in prostate carcinoma detected by comparative genomic hybridization and microsatellite analysis: association with progression and angiogenesis. Strohmeyer DM; Berger AP; Moore DH; Bartsch G; Klocker H; Carroll PR; Loening SA; Jensen RH Prostate; 2004 Apr; 59(1):43-58. PubMed ID: 14991865 [TBL] [Abstract][Full Text] [Related]
18. Metaphase cytogenetics and DNA flow cytometry with analysis of S-phase fraction in prostate cancer: influence on prognosis. Bratt O; Anderson H; Bak-Jensen E; Baldetorp B; Lundgren R Urology; 1996 Feb; 47(2):218-24. PubMed ID: 8607238 [TBL] [Abstract][Full Text] [Related]
19. Longitudinal evaluation of cytogenetic aberrations in prostatic cancer: tumours that recur in time display an intermediate genetic status between non-persistent and metastatic tumours. Alers JC; Krijtenburg PJ; Hop WC; Bolle WA; Schröder FH; van der Kwast TH; Bosman FT; van Dekken H J Pathol; 1998 Jul; 185(3):273-83. PubMed ID: 9771481 [TBL] [Abstract][Full Text] [Related]
20. Cytogenetic analysis of 57 primary prostatic adenocarcinomas. Lundgren R; Mandahl N; Heim S; Limon J; Henrikson H; Mitelman F Genes Chromosomes Cancer; 1992 Jan; 4(1):16-24. PubMed ID: 1377005 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]