BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

542 related articles for article (PubMed ID: 18715626)

  • 1. Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications.
    Ju-Nam Y; Lead JR
    Sci Total Environ; 2008 Aug; 400(1-3):396-414. PubMed ID: 18715626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occurrence, behavior and effects of nanoparticles in the environment.
    Nowack B; Bucheli TD
    Environ Pollut; 2007 Nov; 150(1):5-22. PubMed ID: 17658673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silver nanoparticles: green synthesis and their antimicrobial activities.
    Sharma VK; Yngard RA; Lin Y
    Adv Colloid Interface Sci; 2009 Jan; 145(1-2):83-96. PubMed ID: 18945421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental transformations of silver nanoparticles: impact on stability and toxicity.
    Levard C; Hotze EM; Lowry GV; Brown GE
    Environ Sci Technol; 2012 Jul; 46(13):6900-14. PubMed ID: 22339502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules.
    Diegoli S; Manciulea AL; Begum S; Jones IP; Lead JR; Preece JA
    Sci Total Environ; 2008 Aug; 402(1):51-61. PubMed ID: 18534664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption and inhibition of butyrylcholinesterase by different engineered nanoparticles.
    Wang Z; Zhang K; Zhao J; Liu X; Xing B
    Chemosphere; 2010 Mar; 79(1):86-92. PubMed ID: 20089293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro.
    Auffan M; Rose J; Wiesner MR; Bottero JY
    Environ Pollut; 2009 Apr; 157(4):1127-33. PubMed ID: 19013699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aquatic environmental nanoparticles.
    Wigginton NS; Haus KL; Hochella MF
    J Environ Monit; 2007 Dec; 9(12):1306-16. PubMed ID: 18049768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?
    Moore MN
    Environ Int; 2006 Dec; 32(8):967-76. PubMed ID: 16859745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the toxicity of selected types of nanochemicals.
    Kumar V; Kumari A; Guleria P; Yadav SK
    Rev Environ Contam Toxicol; 2012; 215():39-121. PubMed ID: 22057930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment.
    Bhatt I; Tripathi BN
    Chemosphere; 2011 Jan; 82(3):308-17. PubMed ID: 20980041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methodological considerations for testing the ecotoxicity of carbon nanotubes and fullerenes: review.
    Petersen EJ; Henry TB
    Environ Toxicol Chem; 2012 Jan; 31(1):60-72. PubMed ID: 21994158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria.
    Simon-Deckers A; Loo S; Mayne-L'hermite M; Herlin-Boime N; Menguy N; Reynaud C; Gouget B; Carrière M
    Environ Sci Technol; 2009 Nov; 43(21):8423-9. PubMed ID: 19924979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecotoxicity of manufactured ZnO nanoparticles--a review.
    Ma H; Williams PL; Diamond SA
    Environ Pollut; 2013 Jan; 172():76-85. PubMed ID: 22995930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silver nanoparticles: behaviour and effects in the aquatic environment.
    Fabrega J; Luoma SN; Tyler CR; Galloway TS; Lead JR
    Environ Int; 2011 Feb; 37(2):517-31. PubMed ID: 21159383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the challenge of quantifying man-made nanoparticles in the aquatic environment.
    Howard AG
    J Environ Monit; 2010 Jan; 12(1):135-42. PubMed ID: 20082007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro effects of suspensions of selected nanoparticles (C60 fullerene, TiO2, SiO2) on Mytilus hemocytes.
    Canesi L; Ciacci C; Vallotto D; Gallo G; Marcomini A; Pojana G
    Aquat Toxicol; 2010 Jan; 96(2):151-8. PubMed ID: 19900724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: a critical review.
    Baalousha M; Stolpe B; Lead JR
    J Chromatogr A; 2011 Jul; 1218(27):4078-103. PubMed ID: 21621214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partitioning behavior and stabilization of hydrophobically coated HfO2, ZrO2 and Hfx Zr 1-x O2 nanoparticles with natural organic matter reveal differences dependent on crystal structure.
    Navarro DA; Depner SW; Watson DF; Aga DS; Banerjee S
    J Hazard Mater; 2011 Nov; 196():302-10. PubMed ID: 21963173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection and characterization of engineered nanoparticles in food and the environment.
    Tiede K; Boxall AB; Tear SP; Lewis J; David H; Hassellov M
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Jul; 25(7):795-821. PubMed ID: 18569000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.