BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 18715824)

  • 1. Quenching effect of nickel ions on fluorescent gold nanoparticles.
    Zheng HZ; Liu L; Zhang ZJ; Huang YM; Zhou DB; Hao JY; Lu YH; Chen SM
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jan; 71(5):1795-8. PubMed ID: 18715824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of bovine serum albumin and albumin-gold nanoconjugates with l-aspartic acid. A spectroscopic approach.
    Mandal G; Bardhan M; Ganguly T
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):178-84. PubMed ID: 20667434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Completely dispersible PEGylated gold nanoparticles under physiological conditions: modification of gold nanoparticles with precisely controlled PEG-b-polyamine.
    Miyamoto D; Oishi M; Kojima K; Yoshimoto K; Nagasaki Y
    Langmuir; 2008 May; 24(9):5010-7. PubMed ID: 18386943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescent gold nanoparticles-based fluorescence sensor for Cu2+ ions.
    Chen W; Tu X; Guo X
    Chem Commun (Camb); 2009 Apr; (13):1736-8. PubMed ID: 19294279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interaction between casein micelles and gold nanoparticles.
    Liu Y; Guo R
    J Colloid Interface Sci; 2009 Apr; 332(1):265-9. PubMed ID: 19131073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticle-protein interactions: a thermodynamic and kinetic study of the adsorption of bovine serum albumin to gold nanoparticle surfaces.
    Boulos SP; Davis TA; Yang JA; Lohse SE; Alkilany AM; Holland LA; Murphy CJ
    Langmuir; 2013 Dec; 29(48):14984-96. PubMed ID: 24215427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interaction of sonochemically synthesized gold nanoparticles with serum albumins.
    Naveenraj S; Anandan S; Kathiravan A; Renganathan R; Ashokkumar M
    J Pharm Biomed Anal; 2010 Nov; 53(3):804-10. PubMed ID: 20456895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly selective fluorescent sensors for Hg(2+) based on bovine serum albumin-capped gold nanoclusters.
    Hu D; Sheng Z; Gong P; Zhang P; Cai L
    Analyst; 2010 Jun; 135(6):1411-6. PubMed ID: 20419194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competitive homogeneous digoxigenin immunoassay based on fluorescence quenching by gold nanoparticles.
    Mayilo S; Ehlers B; Wunderlich M; Klar TA; Josel HP; Heindl D; Nichtl A; Kürzinger K; Feldmann J
    Anal Chim Acta; 2009 Jul; 646(1-2):119-22. PubMed ID: 19523564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescent gold clusters as nanosensors for copper ions in live cells.
    Durgadas CV; Sharma CP; Sreenivasan K
    Analyst; 2011 Mar; 136(5):933-40. PubMed ID: 21152627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of chloroquine-conjugated gold nanoparticles with bovine serum albumin.
    Joshi P; Chakraborty S; Dey S; Shanker V; Ansari ZA; Singh SP; Chakrabarti P
    J Colloid Interface Sci; 2011 Mar; 355(2):402-9. PubMed ID: 21216410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasensitive protein concentration measurement based on particle adsorption and fluorescence quenching.
    Pihlasalo S; Kirjavainen J; Hänninen P; Härmä H
    Anal Chem; 2009 Jun; 81(12):4995-5000. PubMed ID: 19453161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoluminescence from water-soluble BSA-protected gold nanoparticles.
    Liu L; Zheng HZ; Zhang ZJ; Huang YM; Chen SM; Hu YF
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Mar; 69(3):701-5. PubMed ID: 17590386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of metal ions on the interaction between bovine serum albumin and berberine chloride extracted from a traditional Chinese Herb coptis chinensis franch.
    Liu XF; Xia YM; Fang Y
    J Inorg Biochem; 2005 Jul; 99(7):1449-57. PubMed ID: 15908003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the interaction between oxolinic acid aggregates and protein and its analytical application.
    Wu X; Zheng J; Ding H; Ran D; Xu W; Song Y; Yang J
    Anal Chim Acta; 2007 Jul; 596(1):16-22. PubMed ID: 17616235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ni(2+)-modified gold nanoclusters for fluorescence turn-on detection of histidine in biological fluids.
    He Y; Wang X; Zhu J; Zhong S; Song G
    Analyst; 2012 Sep; 137(17):4005-9. PubMed ID: 22766627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contrasting effect of gold nanoparticles and nanorods with different surface modifications on the structure and activity of bovine serum albumin.
    Chakraborty S; Joshi P; Shanker V; Ansari ZA; Singh SP; Chakrabarti P
    Langmuir; 2011 Jun; 27(12):7722-31. PubMed ID: 21591651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the binding of luteolin to bovine serum albumin.
    Yang Y; Hu Q; Fan Y; Shen H
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Feb; 69(2):432-6. PubMed ID: 17719269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Study on interaction of L-homocysteine modified gold nanoparticles with bovine serum albumin by fluorescence spectroscopy].
    Chen HH; Zhu DX; Guo YL; Wang Y; Yan HT
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Dec; 32(12):3276-80. PubMed ID: 23427551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro study on the binding of anti-coagulant vitamin to bovine serum albumin and the influence of toxic ions and common ions on binding.
    Shaikh SM; Seetharamappa J; Kandagal PB; Manjunatha DH
    Int J Biol Macromol; 2007 Jun; 41(1):81-6. PubMed ID: 17303235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.