These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 18716055)

  • 1. Microtubule-mediated Src tyrosine kinase trafficking in neuronal growth cones.
    Wu B; Decourt B; Zabidi MA; Wuethrich LT; Kim WH; Zhou Z; MacIsaac K; Suter DM
    Mol Biol Cell; 2008 Nov; 19(11):4611-27. PubMed ID: 18716055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Src and cortactin promote lamellipodia protrusion and filopodia formation and stability in growth cones.
    He Y; Ren Y; Wu B; Decourt B; Lee AC; Taylor A; Suter DM
    Mol Biol Cell; 2015 Sep; 26(18):3229-44. PubMed ID: 26224308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A single tyrosine phosphorylation site in cortactin is important for filopodia formation in neuronal growth cones.
    Ren Y; He Y; Brown S; Zbornik E; Mlodzianoski MJ; Ma D; Huang F; Mattoo S; Suter DM
    Mol Biol Cell; 2019 Jul; 30(15):1817-1833. PubMed ID: 31116646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Src-dependent tyrosine phosphorylation at the tips of growth cone filopodia promotes extension.
    Robles E; Woo S; Gomez TM
    J Neurosci; 2005 Aug; 25(33):7669-81. PubMed ID: 16107653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortactin colocalizes with filopodial actin and accumulates at IgCAM adhesion sites in Aplysia growth cones.
    Decourt B; Munnamalai V; Lee AC; Sanchez L; Suter DM
    J Neurosci Res; 2009 Apr; 87(5):1057-68. PubMed ID: 19021290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microtubule dynamics are necessary for SRC family kinase-dependent growth cone steering.
    Suter DM; Schaefer AW; Forscher P
    Curr Biol; 2004 Jul; 14(13):1194-9. PubMed ID: 15242617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Microtubule-Associated Protein Tau Mediates the Organization of Microtubules and Their Dynamic Exploration of Actin-Rich Lamellipodia and Filopodia of Cortical Growth Cones.
    Biswas S; Kalil K
    J Neurosci; 2018 Jan; 38(2):291-307. PubMed ID: 29167405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microtubule and cell contact dependency of ER-bound PTP1B localization in growth cones.
    Fuentes F; Arregui CO
    Mol Biol Cell; 2009 Mar; 20(6):1878-89. PubMed ID: 19158394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microtubule and Actin Interplay Drive Intracellular c-Src Trafficking.
    Arnette C; Frye K; Kaverina I
    PLoS One; 2016; 11(2):e0148996. PubMed ID: 26866809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Filopodial actin bundles are not necessary for microtubule advance into the peripheral domain of Aplysia neuronal growth cones.
    Burnette DT; Schaefer AW; Ji L; Danuser G; Forscher P
    Nat Cell Biol; 2007 Dec; 9(12):1360-9. PubMed ID: 18026092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of microtubule dynamics during adhesion-mediated growth cone guidance.
    Lee AC; Suter DM
    Dev Neurobiol; 2008 Oct; 68(12):1363-77. PubMed ID: 18698606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of glycogen synthase kinase 3beta in sensory neurons in culture alters filopodia dynamics and microtubule distribution in growth cones.
    Owen R; Gordon-Weeks PR
    Mol Cell Neurosci; 2003 Aug; 23(4):626-37. PubMed ID: 12932442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Filopodial calcium transients regulate growth cone motility and guidance through local activation of calpain.
    Robles E; Huttenlocher A; Gomez TM
    Neuron; 2003 May; 38(4):597-609. PubMed ID: 12765611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. STIM1 Is Required for Remodeling of the Endoplasmic Reticulum and Microtubule Cytoskeleton in Steering Growth Cones.
    Pavez M; Thompson AC; Arnott HJ; Mitchell CB; D'Atri I; Don EK; Chilton JK; Scott EK; Lin JY; Young KM; Gasperini RJ; Foa L
    J Neurosci; 2019 Jun; 39(26):5095-5114. PubMed ID: 31023836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antagonistic forces generated by cytoplasmic dynein and myosin-II during growth cone turning and axonal retraction.
    Myers KA; Tint I; Nadar CV; He Y; Black MM; Baas PW
    Traffic; 2006 Oct; 7(10):1333-51. PubMed ID: 16911591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increase in Growth Cone Size Correlates with Decrease in Neurite Growth Rate.
    Ren Y; Suter DM
    Neural Plast; 2016; 2016():3497901. PubMed ID: 27274874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Filopodia and actin arcs guide the assembly and transport of two populations of microtubules with unique dynamic parameters in neuronal growth cones.
    Schaefer AW; Kabir N; Forscher P
    J Cell Biol; 2002 Jul; 158(1):139-52. PubMed ID: 12105186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmission of growth cone traction force through apCAM-cytoskeletal linkages is regulated by Src family tyrosine kinase activity.
    Suter DM; Forscher P
    J Cell Biol; 2001 Oct; 155(3):427-38. PubMed ID: 11673478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Co-purification Method for Efficient Production and Src Kinase-mediated Phosphorylation of
    Brown SL; Ren Y; Suter DM; Mattoo S
    Bio Protoc; 2021 Sep; 11(18):e4158. PubMed ID: 34692908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RAGE recycles at the plasma membrane in S100B secretory vesicles and promotes Schwann cells morphological changes.
    Perrone L; Peluso G; Melone MA
    J Cell Physiol; 2008 Oct; 217(1):60-71. PubMed ID: 18452184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.