BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 18716390)

  • 41. Determinants of respirable quartz exposure in farming.
    Swanepoel A; Swanepoel C; Rees D
    J Occup Environ Hyg; 2018 Jan; 15(1):71-79. PubMed ID: 29059020
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Elemental properties of copper slag and measured airborne exposures at a copper slag processing facility.
    Mugford C; Gibbs JL; Boylstein R
    J Occup Environ Hyg; 2017 Aug; 14(8):D120-D129. PubMed ID: 28506182
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Respirable dust and respirable silica exposure in Ontario gold mines.
    Verma DK; Rajhans GS; Malik OP; des Tombe K
    J Occup Environ Hyg; 2014; 11(2):111-6. PubMed ID: 24369933
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Respiratory health and inflammatory markers - Exposure to respirable dust and quartz and chemical binders in Swedish iron foundries.
    Andersson L; Bryngelsson IL; Hedbrant A; Persson A; Johansson A; Ericsson A; Lindell I; Stockfelt L; Särndahl E; Westberg H
    PLoS One; 2019; 14(11):e0224668. PubMed ID: 31675355
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Respirable size-selective sampler for end-of-shift quartz measurement: Development and performance.
    Lee T; Lee L; Cauda E; Hummer J; Harper M
    J Occup Environ Hyg; 2017 May; 14(5):335-342. PubMed ID: 27792471
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Respirable coal mine dust in underground mines, United States, 1982-2017.
    Doney BC; Blackley D; Hale JM; Halldin C; Kurth L; Syamlal G; Laney AS
    Am J Ind Med; 2019 Jun; 62(6):478-485. PubMed ID: 31033017
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Benefits and limitations of field-based monitoring approaches for respirable dust and crystalline silica applied in a sandstone quarry.
    Cauda E; Dolan E; Cecala A; Louk K; Yekich M; Chubb L; Lingenfelter A
    J Occup Environ Hyg; 2022 Dec; 19(12):730-741. PubMed ID: 36219680
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluation of cut-off saw exposure control methods for respirable dust and crystalline silica in roadway construction.
    Middaugh B; Hubbard B; Zimmerman N; McGlothlin J
    J Occup Environ Hyg; 2012; 9(3):157-65. PubMed ID: 22394370
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Occupational exposure to dust in quartz manufacturing industry.
    Fulekar MH
    Ann Occup Hyg; 1999 May; 43(4):269-73. PubMed ID: 10432870
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Determination and Prediction of Respirable Dust and Crystalline-Free Silica in the Taiwanese Foundry Industry.
    Kuo CT; Chiu FF; Bao BY; Chang TY
    Int J Environ Res Public Health; 2018 Sep; 15(10):. PubMed ID: 30257469
    [No Abstract]   [Full Text] [Related]  

  • 51. Field evaluation of an engineering control for respirable crystalline silica exposures during mortar removal.
    Collingwood S; Heitbrink WA
    J Occup Environ Hyg; 2007 Nov; 4(11):875-87. PubMed ID: 17917951
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Occupational Exposure to Respirable Dust, Respirable Crystalline Silica and Diesel Engine Exhaust Emissions in the London Tunnelling Environment.
    Galea KS; Mair C; Alexander C; de Vocht F; van Tongeren M
    Ann Occup Hyg; 2016 Mar; 60(2):263-9. PubMed ID: 26403363
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The development and testing of a prototype mini-baghouse to control the release of respirable crystalline silica from sand movers.
    Alexander BM; Esswein EJ; Gressel MG; Kratzer JL; Feng HA; King B; Miller AL; Cauda E
    J Occup Environ Hyg; 2016 Aug; 13(8):628-38. PubMed ID: 27003622
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An International comparison of the crystallinity of calibration materials for the analysis of respirable alpha-quartz using X-ray diffraction and a comparison with results from the infrared KBr disc method.
    Stacey P; Kauffer E; Moulut JC; Dion C; Beauparlant M; Fernandez P; Key-Schwartz R; Friede B; Wake D
    Ann Occup Hyg; 2009 Aug; 53(6):639-49. PubMed ID: 19531809
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Exposures to quartz, diesel, dust, and welding fumes during heavy and highway construction.
    Woskie SR; Kalil A; Bello D; Virji MA
    AIHA J (Fairfax, Va); 2002; 63(4):447-57. PubMed ID: 12486778
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Elevated exposures to respirable crystalline silica among engineered stone fabrication workers in California, January 2019-February 2020.
    Surasi K; Ballen B; Weinberg JL; Materna BL; Harrison R; Cummings KJ; Heinzerling A
    Am J Ind Med; 2022 Sep; 65(9):701-707. PubMed ID: 35899403
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quartz concentration trends in metal and nonmetal mining.
    Watts WF; Huynh TB; Ramachandran G
    J Occup Environ Hyg; 2012; 9(12):720-32. PubMed ID: 23092305
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A comparison of the performance of samplers for respirable dust in workplaces and laboratory analysis for respirable quartz.
    Verpaele S; Jouret J
    Ann Occup Hyg; 2013 Jan; 57(1):54-62. PubMed ID: 22826536
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Exposure to Quartz in Finnish Workplaces Declined during the First Six Years after the Signing of the NEPSI Agreement, but Evened out between 2013 and 2017.
    Tuomi T; Linnainmaa M; Pennanen S
    Int J Environ Res Public Health; 2018 May; 15(5):. PubMed ID: 29751545
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Respirable dust and silica exposure among World Trade Center cleanup workers.
    Pavilonis BT; Mirer FE
    J Occup Environ Hyg; 2017 Mar; 14(3):187-194. PubMed ID: 27717301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.