These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 18716757)

  • 1. Biosynthesis of the respiratory formate dehydrogenases from Escherichia coli: characterization of the FdhE protein.
    Lüke I; Butland G; Moore K; Buchanan G; Lyall V; Fairhurst SA; Greenblatt JF; Emili A; Palmer T; Sargent F
    Arch Microbiol; 2008 Dec; 190(6):685-96. PubMed ID: 18716757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic evidence that genes fdhD and fdhE do not control synthesis of formate dehydrogenase-N in Escherichia coli K-12.
    Stewart V; Lin JT; Berg BL
    J Bacteriol; 1991 Jul; 173(14):4417-23. PubMed ID: 1648557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly of membrane-bound respiratory complexes by the Tat protein-transport system.
    Sargent F; Berks BC; Palmer T
    Arch Microbiol; 2002 Aug; 178(2):77-84. PubMed ID: 12115052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Levels of control exerted by the Isc iron-sulfur cluster system on biosynthesis of the formate hydrogenlyase complex.
    Pinske C; Jaroschinsky M; Sawers RG
    Microbiology (Reading); 2013 Jun; 159(Pt 6):1179-1189. PubMed ID: 23558265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of protein-protein interactions between the TatB and TatC subunits of the twin-arginine translocase system and respiratory enzyme specific chaperones.
    Kuzniatsova L; Winstone TM; Turner RJ
    Biochim Biophys Acta; 2016 Apr; 1858(4):767-75. PubMed ID: 26826271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The respiratory molybdo-selenoprotein formate dehydrogenases of Escherichia coli have hydrogen: benzyl viologen oxidoreductase activity.
    Soboh B; Pinske C; Kuhns M; Waclawek M; Ihling C; Trchounian K; Trchounian A; Sinz A; Sawers G
    BMC Microbiol; 2011 Aug; 11():173. PubMed ID: 21806784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular and biochemical characterization of two tungsten- and selenium-containing formate dehydrogenases from Eubacterium acidaminophilum that are associated with components of an iron-only hydrogenase.
    Graentzdoerffer A; Rauh D; Pich A; Andreesen JR
    Arch Microbiol; 2003; 179(2):116-30. PubMed ID: 12560990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hydrogenases and formate dehydrogenases of Escherichia coli.
    Sawers G
    Antonie Van Leeuwenhoek; 1994; 66(1-3):57-88. PubMed ID: 7747941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleotide sequence of the fdhE gene involved in respiratory formate dehydrogenase formation in Escherichia coli K-12.
    Schlindwein C; Mandrand MA
    Gene; 1991 Jan; 97(1):147-8. PubMed ID: 1995428
    [No Abstract]   [Full Text] [Related]  

  • 10. Identification and expression of the Escherichia coli fdhD and fdhE genes, which are involved in the formation of respiratory formate dehydrogenase.
    Schlindwein C; Giordano G; Santini CL; Mandrand MA
    J Bacteriol; 1990 Oct; 172(10):6112-21. PubMed ID: 2170340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of isc operon mutations on the biosynthesis and activity of key anaerobic metalloenzymes in Escherichia coli.
    Jaroschinsky M; Pinske C; Gary Sawers R
    Microbiology (Reading); 2017 Jun; 163(6):878-890. PubMed ID: 28640740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a Formate-Dependent Uric Acid Degradation Pathway in
    Iwadate Y; Kato JI
    J Bacteriol; 2019 Jun; 201(11):. PubMed ID: 30885932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of formate dehydrogenases in stationary phase oxidative stress tolerance in Escherichia coli.
    Iwadate Y; Funabasama N; Kato JI
    FEMS Microbiol Lett; 2017 Nov; 364(20):. PubMed ID: 29044403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic Formate and Hydrogen Metabolism.
    Pinske C; Sawers RG
    EcoSal Plus; 2016 Oct; 7(1):. PubMed ID: 27735784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The twin-arginine leader-binding protein, DmsD, interacts with the TatB and TatC subunits of the Escherichia coli twin-arginine translocase.
    Papish AL; Ladner CL; Turner RJ
    J Biol Chem; 2003 Aug; 278(35):32501-6. PubMed ID: 12813051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of the Escherichia coli K-12 twin-arginine translocation system promotes increased hydrogen production.
    Penfold DW; Sargent F; Macaskie LE
    FEMS Microbiol Lett; 2006 Sep; 262(2):135-7. PubMed ID: 16923067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression and characterization of the Escherichia coli fdo locus and a possible physiological role for aerobic formate dehydrogenase.
    Abaibou H; Pommier J; Benoit S; Giordano G; Mandrand-Berthelot MA
    J Bacteriol; 1995 Dec; 177(24):7141-9. PubMed ID: 8522521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behaviour of topological marker proteins targeted to the Tat protein transport pathway.
    Stanley NR; Sargent F; Buchanan G; Shi J; Stewart V; Palmer T; Berks BC
    Mol Microbiol; 2002 Feb; 43(4):1005-21. PubMed ID: 11929547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping cell envelope and periplasm protein interactions of Escherichia coli respiratory formate dehydrogenases by chemical cross-linking and mass spectrometry.
    Zorn M; Ihling CH; Golbik R; Sawers RG; Sinz A
    J Proteome Res; 2014 Dec; 13(12):5524-35. PubMed ID: 25251153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordination of selenium to molybdenum in formate dehydrogenase H from Escherichia coli.
    Gladyshev VN; Khangulov SV; Axley MJ; Stadtman TC
    Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7708-11. PubMed ID: 8052647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.