These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 18716772)

  • 1. Microalgae-based processes for the biodegradation of pretreated piggery wastewaters.
    González C; Marciniak J; Villaverde S; García-Encina PA; Muñoz R
    Appl Microbiol Biotechnol; 2008 Oct; 80(5):891-8. PubMed ID: 18716772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous nutrients and carbon removal during pretreated swine slurry degradation in a tubular biofilm photobioreactor.
    de Godos I; González C; Becares E; García-Encina PA; Muñoz R
    Appl Microbiol Biotechnol; 2009 Feb; 82(1):187-94. PubMed ID: 19122998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation.
    de Godos I; Vargas VA; Blanco S; González MC; Soto R; García-Encina PA; Becares E; Muñoz R
    Bioresour Technol; 2010 Jul; 101(14):5150-8. PubMed ID: 20219356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of feed characteristics on the organic matter, nitrogen and phosphorus removal in an activated sludge system treating piggery slurry.
    González C; García PA; Muñoz R
    Water Sci Technol; 2009; 60(8):2145-52. PubMed ID: 19844061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient nutrient removal from swine manure in a tubular biofilm photo-bioreactor using algae-bacteria consortia.
    González C; Marciniak J; Villaverde S; León C; García PA; Muñoz R
    Water Sci Technol; 2008; 58(1):95-102. PubMed ID: 18653942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term operation of high rate algal ponds for the bioremediation of piggery wastewaters at high loading rates.
    Godos Id; Blanco S; García-Encina PA; Becares E; Muñoz R
    Bioresour Technol; 2009 Oct; 100(19):4332-9. PubMed ID: 19427783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids.
    Wang H; Xiong H; Hui Z; Zeng X
    Bioresour Technol; 2012 Jan; 104():215-20. PubMed ID: 22130084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of operational conditions on the degradation of organic matter and development of microalgae-bacteria consortia when treating swine slurry.
    González-Fernández C; Riaño-Irazábal B; Molinuevo-Salces B; Blanco S; García-González MC
    Appl Microbiol Biotechnol; 2011 May; 90(3):1147-53. PubMed ID: 21287165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling photosynthetically oxygenated biodegradation processes using artificial neural networks.
    Arranz A; Bordel S; Villaverde S; Zamarreño JM; Guieysse B; Muñoz R
    J Hazard Mater; 2008 Jun; 155(1-2):51-7. PubMed ID: 18164545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of pH change on the performance and microbial community of enhanced biological phosphate removal process.
    Zhang T; Liu Y; Fang HH
    Biotechnol Bioeng; 2005 Oct; 92(2):173-82. PubMed ID: 15962340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of polyhydroxyalkanoates by activated sludge treating a paper mill wastewater.
    Bengtsson S; Werker A; Christensson M; Welander T
    Bioresour Technol; 2008 Feb; 99(3):509-16. PubMed ID: 17360180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pretreatment by the Fe-Cu process for enhancing biological degradability of the mixed wastewater.
    Fan JH; Ma LM
    J Hazard Mater; 2009 May; 164(2-3):1392-7. PubMed ID: 19019539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coagulation/flocculation-based removal of algal-bacterial biomass from piggery wastewater treatment.
    de Godos I; Guzman HO; Soto R; García-Encina PA; Becares E; Muñoz R; Vargas VA
    Bioresour Technol; 2011 Jan; 102(2):923-7. PubMed ID: 20933398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen transformations under different conditions in open ponds by means of microalgae-bacteria consortium treating pig slurry.
    González-Fernández C; Molinuevo-Salces B; García-González MC
    Bioresour Technol; 2011 Jan; 102(2):960-6. PubMed ID: 20943377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of flue gas sparging on the performance of high rate algae ponds treating agro-industrial wastewaters.
    de Godos I; Blanco S; García-Encina PA; Becares E; Muñoz R
    J Hazard Mater; 2010 Jul; 179(1-3):1049-54. PubMed ID: 20434262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications.
    Chinnasamy S; Bhatnagar A; Hunt RW; Das KC
    Bioresour Technol; 2010 May; 101(9):3097-105. PubMed ID: 20053551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological nitrate removal in industrial wastewater treatment: which electron donor we can choose.
    Park JY; Yoo YJ
    Appl Microbiol Biotechnol; 2009 Mar; 82(3):415-29. PubMed ID: 19148639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slurry-phase biodegradation of weathered oily sludge waste.
    Machín-Ramírez C; Okoh AI; Morales D; Mayolo-Deloisa K; Quintero R; Trejo-Hernández MR
    Chemosphere; 2008 Jan; 70(4):737-44. PubMed ID: 17659320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the influence of the carbon oxidation-reduction state on organic pollutant biodegradation in algal-bacterial photobioreactors.
    Bahr M; Stams AJ; De la Rosa F; García-Encina PA; Muñoz R
    Appl Microbiol Biotechnol; 2011 May; 90(4):1527-36. PubMed ID: 21452035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological hydrogen production from sterilized sewage sludge by anaerobic self-fermentation.
    Xiao B; Liu J
    J Hazard Mater; 2009 Aug; 168(1):163-7. PubMed ID: 19278778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.