These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 18716794)
1. Cloning and characterisation of a maize carotenoid cleavage dioxygenase (ZmCCD1) and its involvement in the biosynthesis of apocarotenoids with various roles in mutualistic and parasitic interactions. Sun Z; Hans J; Walter MH; Matusova R; Beekwilder J; Verstappen FW; Ming Z; van Echtelt E; Strack D; Bisseling T; Bouwmeester HJ Planta; 2008 Oct; 228(5):789-801. PubMed ID: 18716794 [TBL] [Abstract][Full Text] [Related]
3. Differential spatio-temporal expression of carotenoid cleavage dioxygenases regulates apocarotenoid fluxes during AM symbiosis. López-Ráez JA; Fernández I; García JM; Berrio E; Bonfante P; Walter MH; Pozo MJ Plant Sci; 2015 Jan; 230():59-69. PubMed ID: 25480008 [TBL] [Abstract][Full Text] [Related]
4. Stimulation of carotenoid metabolism in arbuscular mycorrhizal roots. Fester T; Schmidt D; Lohse S; Walter MH; Giuliano G; Bramley PM; Fraser PD; Hause B; Strack D Planta; 2002 Nov; 216(1):148-54. PubMed ID: 12430024 [TBL] [Abstract][Full Text] [Related]
5. RNA interference-mediated repression of MtCCD1 in mycorrhizal roots of Medicago truncatula causes accumulation of C27 apocarotenoids, shedding light on the functional role of CCD1. Floss DS; Schliemann W; Schmidt J; Strack D; Walter MH Plant Physiol; 2008 Nov; 148(3):1267-82. PubMed ID: 18790999 [TBL] [Abstract][Full Text] [Related]
6. The carotenoid cleavage dioxygenase 1 enzyme has broad substrate specificity, cleaving multiple carotenoids at two different bond positions. Vogel JT; Tan BC; McCarty DR; Klee HJ J Biol Chem; 2008 Apr; 283(17):11364-73. PubMed ID: 18285342 [TBL] [Abstract][Full Text] [Related]
7. Chemical identification and functional analysis of apocarotenoids involved in the development of arbuscular mycorrhizal symbiosis. Akiyama K Biosci Biotechnol Biochem; 2007 Jun; 71(6):1405-14. PubMed ID: 17587670 [TBL] [Abstract][Full Text] [Related]
8. Occurrence and localization of apocarotenoids in arbuscular mycorrhizal plant roots. Fester T; Hause B; Schmidt D; Halfmann K; Schmidt J; Wray V; Hause G; Strack D Plant Cell Physiol; 2002 Mar; 43(3):256-65. PubMed ID: 11917079 [TBL] [Abstract][Full Text] [Related]
9. Difference in Striga-susceptibility is reflected in strigolactone secretion profile, but not in compatibility and host preference in arbuscular mycorrhizal symbiosis in two maize cultivars. Yoneyama K; Arakawa R; Ishimoto K; Kim HI; Kisugi T; Xie X; Nomura T; Kanampiu F; Yokota T; Ezawa T; Yoneyama K New Phytol; 2015 May; 206(3):983-989. PubMed ID: 25754513 [TBL] [Abstract][Full Text] [Related]
10. The apocarotenoid metabolite zaxinone regulates growth and strigolactone biosynthesis in rice. Wang JY; Haider I; Jamil M; Fiorilli V; Saito Y; Mi J; Baz L; Kountche BA; Jia KP; Guo X; Balakrishna A; Ntui VO; Reinke B; Volpe V; Gojobori T; Blilou I; Lanfranco L; Bonfante P; Al-Babili S Nat Commun; 2019 Feb; 10(1):810. PubMed ID: 30778050 [TBL] [Abstract][Full Text] [Related]
11. Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles. Walter MH; Floss DS; Strack D Planta; 2010 Jun; 232(1):1-17. PubMed ID: 20396903 [TBL] [Abstract][Full Text] [Related]
12. ZmCCD7/ZpCCD7 encodes a carotenoid cleavage dioxygenase mediating shoot branching. Pan X; Zheng H; Zhao J; Xu Y; Li X Planta; 2016 Jun; 243(6):1407-18. PubMed ID: 26895334 [TBL] [Abstract][Full Text] [Related]
13. The carotenoid dioxygenase gene family in maize, sorghum, and rice. Vallabhaneni R; Bradbury LM; Wurtzel ET Arch Biochem Biophys; 2010 Dec; 504(1):104-11. PubMed ID: 20670614 [TBL] [Abstract][Full Text] [Related]
14. Role of carotenoid cleavage dioxygenase 1 (CCD1) in apocarotenoid biogenesis revisited. Floss DS; Walter MH Plant Signal Behav; 2009 Mar; 4(3):172-5. PubMed ID: 19721743 [TBL] [Abstract][Full Text] [Related]
15. Integration of rice apocarotenoid profile and expression pattern of Carotenoid Cleavage Dioxygenases reveals a positive effect of β-ionone on mycorrhization. Votta C; Wang JY; Cavallini N; Savorani F; Capparotto A; Liew KX; Giovannetti M; Lanfranco L; Al-Babili S; Fiorilli V Plant Physiol Biochem; 2024 Feb; 207():108366. PubMed ID: 38244387 [TBL] [Abstract][Full Text] [Related]
16. Cloning, characterization, and immunolocalization of a mycorrhiza-inducible 1-deoxy-d-xylulose 5-phosphate reductoisomerase in arbuscule-containing cells of maize. Hans J; Hause B; Strack D; Walter MH Plant Physiol; 2004 Feb; 134(2):614-24. PubMed ID: 14764905 [TBL] [Abstract][Full Text] [Related]
17. Molecular cloning and characterization of cDNAs encoding carotenoid cleavage dioxygenase in bitter melon (Momordica charantia). Tuan PA; Park SU J Plant Physiol; 2013 Jan; 170(1):115-20. PubMed ID: 23043987 [TBL] [Abstract][Full Text] [Related]
18. Apocarotenoids: A New Carotenoid-Derived Pathway. Beltran JC; Stange C Subcell Biochem; 2016; 79():239-72. PubMed ID: 27485225 [TBL] [Abstract][Full Text] [Related]
19. Identification and expression pattern of a new carotenoid cleavage dioxygenase gene member from Bixa orellana. Rodríguez-Ávila NL; Narváez-Zapata JA; Ramírez-Benítez JE; Aguilar-Espinosa ML; Rivera-Madrid R J Exp Bot; 2011 Nov; 62(15):5385-95. PubMed ID: 21813796 [TBL] [Abstract][Full Text] [Related]
20. Apocarotenoid biosynthesis in arbuscular mycorrhizal roots: contributions from methylerythritol phosphate pathway isogenes and tools for its manipulation. Walter MH; Floss DS; Hans J; Fester T; Strack D Phytochemistry; 2007 Jan; 68(1):130-8. PubMed ID: 17084869 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]