These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 1871680)

  • 41. Synaptic and non-synaptic immunolocalization of GABA and glutamate acid decarboxylase (GAD) in cerebellar cortex of rat.
    Martínez-Rodríguez R; Tonda A; Gragera RR; Paz-Doel R; García-Cordovilla R; Fernández-Fernández E; Fernández AM; González-Romero F; López-Bravo A
    Cell Mol Biol (Noisy-le-grand); 1993 Feb; 39(1):115-23. PubMed ID: 8467237
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Immunocytochemical localization of choline acetyltransferase in rat cerebral cortex: a study of cholinergic neurons and synapses.
    Houser CR; Crawford GD; Salvaterra PM; Vaughn JE
    J Comp Neurol; 1985 Apr; 234(1):17-34. PubMed ID: 3980786
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Callosal terminals in the rat prefrontal cortex: synaptic targets and association with GABA-immunoreactive structures.
    Carr DB; Sesack SR
    Synapse; 1998 Jul; 29(3):193-205. PubMed ID: 9635889
    [TBL] [Abstract][Full Text] [Related]  

  • 44. GABA-immunoreactive neurons in the rat cerebellum: a light and electron microscope study.
    Gabbott PL; Somogyi J; Stewart MG; Hamori J
    J Comp Neurol; 1986 Sep; 251(4):474-90. PubMed ID: 3537020
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Distribution of postsynaptic GABA(A) receptor aggregates in the deep cerebellar nuclei of normal and mutant mice.
    Garin N; Hornung JP; Escher G
    J Comp Neurol; 2002 Jun; 447(3):210-7. PubMed ID: 11984816
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A cytological and experimental study of the neuropil and primary olfactory afferences to the piriform cortex.
    Vargas-Barroso V; Larriva-Sahd J
    Anat Rec (Hoboken); 2013 Sep; 296(9):1297-316. PubMed ID: 23904229
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Alterations in axons and synapses of olfactory cortex following olfactory bulb lesions in newborn rats.
    Westrum LE
    Anat Embryol (Berl); 1980; 160(2):153-72. PubMed ID: 7457913
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Glutamic acid decarboxylase (GAD) immunocytochemistry of developing rabbit hippocampus.
    Kunkel DD; Hendrickson AE; Wu JY; Schwartzkroin PA
    J Neurosci; 1986 Feb; 6(2):541-52. PubMed ID: 3512793
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Establishment of normal synaptic density in deafferented olfactory cortex.
    Friedman B; Price JL
    Brain Res; 1981 Oct; 223(1):146-51. PubMed ID: 7284796
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Immunocytochemical localization of cholecystokinin and glutamic acid decarboxylase during normal development in the prepyriform cortex of rats.
    Westenbroek RE; Westrum LE; Hendrickson AE; Wu JY
    Brain Res; 1987 Aug; 431(2):191-206. PubMed ID: 3304540
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Glutamate decarboxylase in developing rat neocortex: does it correlate with the differentiation of GABAergic neurons and synapses?
    Balcar VJ; Zetzsche T; Wolff JR
    Neurochem Res; 1992 Mar; 17(3):253-60. PubMed ID: 1620269
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Time course of the reduction of GABA terminals in a model of focal epilepsy: a glutamic acid decarboxylase immunocytochemical study.
    Houser CR; Harris AB; Vaughn JE
    Brain Res; 1986 Sep; 383(1-2):129-45. PubMed ID: 3094829
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Glutamic acid decarboxylase immunoreactivity in layer IV of barrel cortex of rat and mouse.
    Lin CS; Lu SM; Schmechel DE
    J Neurosci; 1985 Jul; 5(7):1934-9. PubMed ID: 2991479
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Glutamate-like immunoreactivity in axon terminals from the olfactory bulb to the piriform cortex.
    Hennequet L; Gondra J; Sendino J; Ortega F
    Histol Histopathol; 1998 Jul; 13(3):683-7. PubMed ID: 9690124
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Maternal behavior: glutamic acid decarboxylase activity in the olfactory bulb of the rat.
    Munaro NI
    Pharmacol Biochem Behav; 1990 May; 36(1):81-4. PubMed ID: 2349273
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effect of collateral sprouting on the density of innervation of normal target sites: implications for theories on the regulation of the size of developing synaptic domains.
    Gall C; McWilliams R; Lynch G
    Brain Res; 1979 Oct; 175(1):37-47. PubMed ID: 487150
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spine density on olfactory granule cell dendrites is reduced in rats reared in a restricted olfactory environment.
    Rehn B; Panhuber H; Laing DG; Breipohl W
    Brain Res; 1988 May; 468(1):143-7. PubMed ID: 2454148
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Estrogen responsive cells in the arcuate nucleus of the rat contain glutamic acid decarboxylase (GAD): an electron microscopic immunocytochemical study.
    Léránth C; Sakamoto H; MacLusky NJ; Shanabrough M; Naftolin F
    Brain Res; 1985 Apr; 331(2):376-81. PubMed ID: 3986576
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synaptic remodelling and astrocytic hypertrophy in rat cerebral cortex from early to late adulthood.
    Adams I; Jones DG
    Neurobiol Aging; 1982; 3(3):179-86. PubMed ID: 7162548
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Age-related fine structural changes in axons and synapses during deafferentation of the rat pyriform cortex: a possible basis for plasticity.
    Bakay RA; Westrum LE
    J Neurocytol; 1984 Oct; 13(5):743-65. PubMed ID: 6512565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.