BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 18717549)

  • 1. Mechanical stability of micropipet-aspirated giant vesicles with fluid phase coexistence.
    Das S; Tian A; Baumgart T
    J Phys Chem B; 2008 Sep; 112(37):11625-30. PubMed ID: 18717549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the bending rigidity and the line tension on the mechanical stability of micropipette aspirated vesicles.
    Das S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021908. PubMed ID: 20866838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micropipet aspiration for measuring elastic properties of lipid bilayers.
    Longo ML; Ly HV
    Methods Mol Biol; 2007; 400():421-37. PubMed ID: 17951750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of mechanical strength of unilamellar and multilamellar AOT/water vesicles and their rupture using micropipet aspiration.
    Sagar GH; Bellare JR
    J Phys Chem B; 2009 Oct; 113(42):13805-10. PubMed ID: 19764699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macroscopic properties of phospholipid vesicles with a contact angle between the membrane domains.
    Bozic B; Majhenc J
    Chemphyschem; 2009 Nov; 10(16):2862-70. PubMed ID: 19746504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase transition induced adhesion of giant unilamellar vesicles.
    Franke T; Leirer C; Wixforth A; Schneider MF
    Chemphyschem; 2009 Nov; 10(16):2858-61. PubMed ID: 19598193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical properties of bare and protein-coated giant unilamellar phospholipid vesicles. A comparative study of micropipet aspiration and atomic force microscopy.
    Dieluweit S; Csiszár A; Rubner W; Fleischhauer J; Houben S; Merkel R
    Langmuir; 2010 Jul; 26(13):11041-9. PubMed ID: 20355933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase segregation of untethered zwitterionic model lipid bilayers observed on mercaptoundecanoic-acid-modified gold by AFM imaging and force mapping.
    Ip S; Li JK; Walker GC
    Langmuir; 2010 Jul; 26(13):11060-70. PubMed ID: 20387821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rate constant of tension-induced pore formation in lipid membranes.
    Levadny V; Tsuboi TA; Belaya M; Yamazaki M
    Langmuir; 2013 Mar; 29(12):3848-52. PubMed ID: 23472875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lowering line tension with high cholesterol content induces a transition from macroscopic to nanoscopic phase domains in model biomembranes.
    Tsai WC; Feigenson GW
    Biochim Biophys Acta Biomembr; 2019 Feb; 1861(2):478-485. PubMed ID: 30529459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffusion of liquid domains in lipid bilayer membranes.
    Cicuta P; Keller SL; Veatch SL
    J Phys Chem B; 2007 Apr; 111(13):3328-31. PubMed ID: 17388499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Line tension at fluid membrane domain boundaries measured by micropipette aspiration.
    Tian A; Johnson C; Wang W; Baumgart T
    Phys Rev Lett; 2007 May; 98(20):208102. PubMed ID: 17677743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vesicle budding induced by a pore-forming peptide.
    Yu Y; Vroman JA; Bae SC; Granick S
    J Am Chem Soc; 2010 Jan; 132(1):195-201. PubMed ID: 20000420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholesterol displacement by ceramide in sphingomyelin-containing liquid-ordered domains, and generation of gel regions in giant lipidic vesicles.
    Sot J; Ibarguren M; Busto JV; Montes LR; Goñi FM; Alonso A
    FEBS Lett; 2008 Sep; 582(21-22):3230-6. PubMed ID: 18755187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid domains in giant unilamellar vesicles and their correspondence with equilibrium thermodynamic phases: a quantitative fluorescence microscopy imaging approach.
    Fidorra M; Garcia A; Ipsen JH; Härtel S; Bagatolli LA
    Biochim Biophys Acta; 2009 Oct; 1788(10):2142-9. PubMed ID: 19703410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension.
    Baumgart T; Hess ST; Webb WW
    Nature; 2003 Oct; 425(6960):821-4. PubMed ID: 14574408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane elasticity in giant vesicles with fluid phase coexistence.
    Baumgart T; Das S; Webb WW; Jenkins JT
    Biophys J; 2005 Aug; 89(2):1067-80. PubMed ID: 15894634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competition between line tension and curvature stabilizes modulated phase patterns on the surface of giant unilamellar vesicles: a simulation study.
    Amazon JJ; Goh SL; Feigenson GW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022708. PubMed ID: 23496549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fluorescent cholesterol analog dehydroergosterol induces liquid-ordered domains in model membranes.
    Garvik O; Benediktson P; Simonsen AC; Ipsen JH; Wüstner D
    Chem Phys Lipids; 2009 Jun; 159(2):114-8. PubMed ID: 19477318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of temperature on the formation of liquid phase-separating giant unilamellar vesicles (GUV).
    Betaneli V; Worch R; Schwille P
    Chem Phys Lipids; 2012 Sep; 165(6):630-7. PubMed ID: 22750641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.