BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 18717736)

  • 1. Involvement of glypican-1 autoprocessing in scrapie infection.
    Löfgren K; Cheng F; Fransson LA; Bedecs K; Mani K
    Eur J Neurosci; 2008 Sep; 28(5):964-72. PubMed ID: 18717736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper-dependent co-internalization of the prion protein and glypican-1.
    Cheng F; Lindqvist J; Haigh CL; Brown DR; Mani K
    J Neurochem; 2006 Sep; 98(5):1445-57. PubMed ID: 16923158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The scrapie prion protein is present in flotillin-1-positive vesicles in central- but not peripheral-derived neuronal cell lines.
    Pimpinelli F; Lehmann S; Maridonneau-Parini I
    Eur J Neurosci; 2005 Apr; 21(8):2063-72. PubMed ID: 15869502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glypican-1 facilitates prion conversion in lipid rafts.
    Hooper NM
    J Neurochem; 2011 Mar; 116(5):721-5. PubMed ID: 20681952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Misfolding of the prion protein at the plasma membrane induces endocytosis, intracellular retention and degradation.
    Kiachopoulos S; Heske J; Tatzelt J; Winklhofer KF
    Traffic; 2004 Jun; 5(6):426-36. PubMed ID: 15117317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lentivector-mediated RNAi efficiently suppresses prion protein and prolongs survival of scrapie-infected mice.
    Pfeifer A; Eigenbrod S; Al-Khadra S; Hofmann A; Mitteregger G; Moser M; Bertsch U; Kretzschmar H
    J Clin Invest; 2006 Dec; 116(12):3204-10. PubMed ID: 17143329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactoferrin induces cell surface retention of prion protein and inhibits prion accumulation.
    Iwamaru Y; Shimizu Y; Imamura M; Murayama Y; Endo R; Tagawa Y; Ushiki-Kaku Y; Takenouchi T; Kitani H; Mohri S; Yokoyama T; Okada H
    J Neurochem; 2008 Nov; 107(3):636-46. PubMed ID: 18717818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The highways and byways of prion protein trafficking.
    Campana V; Sarnataro D; Zurzolo C
    Trends Cell Biol; 2005 Feb; 15(2):102-11. PubMed ID: 15695097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient in vitro amplification of a mouse-adapted scrapie prion protein.
    Murayama Y; Yoshioka M; Yokoyama T; Iwamaru Y; Imamura M; Masujin K; Yoshiba S; Mohri S
    Neurosci Lett; 2007 Feb; 413(3):270-3. PubMed ID: 17174030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glypican-1 mediates both prion protein lipid raft association and disease isoform formation.
    Taylor DR; Whitehouse IJ; Hooper NM
    PLoS Pathog; 2009 Nov; 5(11):e1000666. PubMed ID: 19936054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defective nitric oxide-dependent, deaminative cleavage of glypican-1 heparan sulfate in Niemann-Pick C1 fibroblasts.
    Mani K; Cheng F; Fransson LA
    Glycobiology; 2006 Aug; 16(8):711-8. PubMed ID: 16645004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utility of RNAi-mediated prnp gene silencing in neuroblastoma cells permanently infected by prions: potentials and limitations.
    Kim Y; Han B; Titlow W; Mays CE; Kwon M; Ryou C
    Antiviral Res; 2009 Nov; 84(2):185-93. PubMed ID: 19748523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The metabolism of glycosaminoglycans is impaired in prion diseases.
    Mayer-Sonnenfeld T; Zeigler M; Halimi M; Dayan Y; Herzog C; Lasmezas CI; Gabizon R
    Neurobiol Dis; 2005 Dec; 20(3):738-43. PubMed ID: 15951190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of rafts in the fibrillization and aggregation of prions.
    Pinheiro TJ
    Chem Phys Lipids; 2006 Jun; 141(1-2):66-71. PubMed ID: 16647049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody.
    Enari M; Flechsig E; Weissmann C
    Proc Natl Acad Sci U S A; 2001 Jul; 98(16):9295-9. PubMed ID: 11470893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Normal host prion protein necessary for scrapie-induced neurotoxicity.
    Brandner S; Isenmann S; Raeber A; Fischer M; Sailer A; Kobayashi Y; Marino S; Weissmann C; Aguzzi A
    Nature; 1996 Jan; 379(6563):339-43. PubMed ID: 8552188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virus-induced alterations of membrane lipids affect the incorporation of PrP Sc into cells.
    Avrahami D; Dayan-Amouyal Y; Tal S; Mincberg M; Davis C; Abramsky O; Gabizon R
    J Neurosci Res; 2008 Sep; 86(12):2753-62. PubMed ID: 18478553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charged bipolar suramin derivatives induce aggregation of the prion protein at the cell surface and inhibit PrPSc replication.
    Nunziante M; Kehler C; Maas E; Kassack MU; Groschup M; Schätzl HM
    J Cell Sci; 2005 Nov; 118(Pt 21):4959-73. PubMed ID: 16219680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined pharmacological, mutational and cell biology approaches indicate that p53-dependent caspase 3 activation triggered by cellular prion is dependent on its endocytosis.
    Sunyach C; Checler F
    J Neurochem; 2005 Mar; 92(6):1399-407. PubMed ID: 15748158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. KDEL-tagged anti-prion intrabodies impair PrP lysosomal degradation and inhibit scrapie infectivity.
    Vetrugno V; Cardinale A; Filesi I; Mattei S; Sy MS; Pocchiari M; Biocca S
    Biochem Biophys Res Commun; 2005 Dec; 338(4):1791-7. PubMed ID: 16288721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.