BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 18718536)

  • 1. Identification and characterization of the catalytic subunit of phosphatidylinositol 3-kinase in the yellow fever mosquito Aedes aegypti.
    Pri-Tal BM; Brown JM; Riehle MA
    Insect Biochem Mol Biol; 2008 Oct; 38(10):932-9. PubMed ID: 18718536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of phosphatase and tensin homolog expression in the mosquito Aedes aegypti: six splice variants with developmental and tissue specificity.
    Riehle MA; Brown JM
    Insect Mol Biol; 2007 Jun; 16(3):277-86. PubMed ID: 17433073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Aedes Dredd: a novel initiator caspase from the yellow fever mosquito, Aedes aegypti.
    Cooper DM; Pio F; Thi EP; Theilmann D; Lowenberger C
    Insect Biochem Mol Biol; 2007 Jun; 37(6):559-69. PubMed ID: 17517333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aedes Dronc: a novel ecdysone-inducible caspase in the yellow fever mosquito, Aedes aegypti.
    Cooper DM; Thi EP; Chamberlain CM; Pio F; Lowenberger C
    Insect Mol Biol; 2007 Oct; 16(5):563-72. PubMed ID: 17725799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insulin receptor expression during development and a reproductive cycle in the ovary of the mosquito Aedes aegypti.
    Riehle MA; Brown MR
    Cell Tissue Res; 2002 Jun; 308(3):409-20. PubMed ID: 12107434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the ribonucleotide reductase small subunit (R2) in the yellow fever mosquito, Aedes aegypti.
    Pham DQ; Kos PJ; Mayo JJ; Winzerling JJ
    Gene; 2006 May; 372():182-90. PubMed ID: 16530987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of a novel peritrophic matrix protein, Ae-Aper50, and the microvillar membrane protein, AEG12, from the mosquito, Aedes aegypti.
    Shao L; Devenport M; Fujioka H; Ghosh A; Jacobs-Lorena M
    Insect Biochem Mol Biol; 2005 Sep; 35(9):947-59. PubMed ID: 15978997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular analysis of the serine/threonine kinase Akt and its expression in the mosquito Aedes aegypti.
    Riehle MA; Brown MR
    Insect Mol Biol; 2003 Jun; 12(3):225-32. PubMed ID: 12752655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aedes FADD: a novel death domain-containing protein required for antibacterial immunity in the yellow fever mosquito, Aedes aegypti.
    Cooper DM; Chamberlain CM; Lowenberger C
    Insect Biochem Mol Biol; 2009 Jan; 39(1):47-54. PubMed ID: 18977438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional analysis of AeSCP-2 using gene expression knockdown in the yellow fever mosquito, Aedes aegypti.
    Blitzer EJ; Vyazunova I; Lan Q
    Insect Mol Biol; 2005 Jun; 14(3):301-7. PubMed ID: 15926899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential regulation of transferrin 1 and 2 in Aedes aegypti.
    Zhou G; Velasquez LS; Geiser DL; Mayo JJ; Winzerling JJ
    Insect Biochem Mol Biol; 2009 Mar; 39(3):234-44. PubMed ID: 19166934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insulin-mediated secretion of ecdysteroids from mosquito ovaries and molecular cloning of the insulin receptor homologue from ovaries of bloodfed Aedes aegypti.
    Graf R; Neuenschwander S; Brown MR; Ackermann U
    Insect Mol Biol; 1997 May; 6(2):151-63. PubMed ID: 9099579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insulin increase in MAP kinase phosphorylation is shifted to early time-points by overexpressing APS, while Akt phosphorylation is not influenced.
    Onnockx S; Xie J; Degraef C; Erneux C; Pirson I
    Exp Cell Res; 2009 Sep; 315(15):2479-86. PubMed ID: 19527711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insulin-like peptides and ovary ecdysteroidogenic hormone differentially stimulate physiological processes regulating egg formation in the mosquito Aedes aegypti.
    Chen K; Dou X; Eum JH; Harrison RE; Brown MR; Strand MR
    Insect Biochem Mol Biol; 2023 Dec; 163():104028. PubMed ID: 37913852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of PI3 kinase and MAP kinase in IGF-I- and insulin-induced oocyte maturation in Cyprinus carpio.
    Paul S; Pramanick K; Kundu S; Bandyopadhyay A; Mukherjee D
    Mol Cell Endocrinol; 2009 Oct; 309(1-2):93-100. PubMed ID: 19482057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ovary ecdysteroidogenic hormone requires a receptor tyrosine kinase to activate egg formation in the mosquito Aedes aegypti.
    Vogel KJ; Brown MR; Strand MR
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):5057-62. PubMed ID: 25848040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The protein phosphatase PP2A-B' subunit Widerborst is a negative regulator of cytoplasmic activated Akt and lipid metabolism in Drosophila.
    Vereshchagina N; Ramel MC; Bitoun E; Wilson C
    J Cell Sci; 2008 Oct; 121(Pt 20):3383-92. PubMed ID: 18827008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The esterase patterns in the ovaries and the embryonated eggs of Aedes aegypti L.
    Geering K; Oberlin UP
    Acta Trop; 1975; 32(1):48-56. PubMed ID: 239551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of signaling pathways related to cell proliferation stimulated by insulin analogs in human mammary epithelial cell lines.
    Shukla A; Grisouard J; Ehemann V; Hermani A; Enzmann H; Mayer D
    Endocr Relat Cancer; 2009 Jun; 16(2):429-41. PubMed ID: 19153208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Aedes aegypti larval transcriptome: a comparative perspective with emphasis on trypsins and the domain structure of peritrophins.
    Venancio TM; Cristofoletti PT; Ferreira C; Verjovski-Almeida S; Terra WR
    Insect Mol Biol; 2009 Feb; 18(1):33-44. PubMed ID: 19054160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.