BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 18718548)

  • 1. Model reduction and a priori kinetic parameter identifiability analysis using metabolome time series for metabolic reaction networks with linlog kinetics.
    Nikerel IE; van Winden WA; Verheijen PJ; Heijnen JJ
    Metab Eng; 2009 Jan; 11(1):20-30. PubMed ID: 18718548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics.
    Nikerel IE; van Winden WA; van Gulik WM; Heijnen JJ
    BMC Bioinformatics; 2006 Dec; 7():540. PubMed ID: 17184531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the identifiability of metabolic network models.
    Berthoumieux S; Brilli M; Kahn D; de Jong H; Cinquemani E
    J Math Biol; 2013 Dec; 67(6-7):1795-832. PubMed ID: 23229063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncertainty reduction in biochemical kinetic models: Enforcing desired model properties.
    Miskovic L; Béal J; Moret M; Hatzimanikatis V
    PLoS Comput Biol; 2019 Aug; 15(8):e1007242. PubMed ID: 31430276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constructing kinetic models of metabolism at genome-scales: A review.
    Srinivasan S; Cluett WR; Mahadevan R
    Biotechnol J; 2015 Sep; 10(9):1345-59. PubMed ID: 26332243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifiability of large-scale non-linear dynamic network models applied to the ADM1-case study.
    Nimmegeers P; Lauwers J; Telen D; Logist F; Impe JV
    Math Biosci; 2017 Jun; 288():21-34. PubMed ID: 28237667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translating biochemical network models between different kinetic formats.
    Hadlich F; Noack S; Wiechert W
    Metab Eng; 2009 Mar; 11(2):87-100. PubMed ID: 19013536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global identifiability of linear compartmental models--a computer algebra algorithm.
    Audoly S; D'Angiò L; Saccomani MP; Cobelli C
    IEEE Trans Biomed Eng; 1998 Jan; 45(1):36-47. PubMed ID: 9444838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Building a kinetic model of trehalose biosynthesis in Saccharomyces cerevisiae.
    Smallbone K; Malys N; Messiha HL; Wishart JA; Simeonidis E
    Methods Enzymol; 2011; 500():355-70. PubMed ID: 21943906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Top-down analysis of temporal hierarchy in biochemical reaction networks.
    Jamshidi N; Palsson BØ
    PLoS Comput Biol; 2008 Sep; 4(9):e1000177. PubMed ID: 18787685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifiability from a Few Species for a Class of Biochemical Reaction Networks.
    Jeronimo G; Pérez Millán M; Solernó P
    Bull Math Biol; 2019 Jul; 81(7):2133-2175. PubMed ID: 30945101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards a genome-scale kinetic model of cellular metabolism.
    Smallbone K; Simeonidis E; Swainston N; Mendes P
    BMC Syst Biol; 2010 Jan; 4():6. PubMed ID: 20109182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A scalable method for parameter identification in kinetic models of metabolism using steady-state data.
    Srinivasan S; Cluett WR; Mahadevan R
    Bioinformatics; 2019 Dec; 35(24):5216-5225. PubMed ID: 31197317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of kinetic parameters in an S-system equation model for a metabolic reaction system using the Newton-Raphson method.
    Iwata M; Sriyudthsak K; Hirai MY; Shiraishi F
    Math Biosci; 2014 Feb; 248():11-21. PubMed ID: 24291302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal re-design of primary metabolism in Escherichia coli using linlog kinetics.
    Visser D; Schmid JW; Mauch K; Reuss M; Heijnen JJ
    Metab Eng; 2004 Oct; 6(4):378-90. PubMed ID: 15491866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. k-Cone analysis: determining all candidate values for kinetic parameters on a network scale.
    Famili I; Mahadevan R; Palsson BO
    Biophys J; 2005 Mar; 88(3):1616-25. PubMed ID: 15626710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of metabolic function from limited data: Lumped hybrid cybernetic modeling (L-HCM).
    Song HS; Ramkrishna D
    Biotechnol Bioeng; 2010 Jun; 106(2):271-84. PubMed ID: 20148411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Simulation and analysis of ethanol concentration response to enzyme amount changes in Saccharomyces cerevisiae glycolysis pathway model].
    Kong DC; Yang XL; Yan M; Liu CQ; Xu L
    Sheng Wu Gong Cheng Xue Bao; 2007 Mar; 23(2):332-6. PubMed ID: 17460912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parameter estimation in models combining signal transduction and metabolic pathways: the dependent input approach.
    van Riel NA; Sontag ED
    Syst Biol (Stevenage); 2006 Jul; 153(4):263-74. PubMed ID: 16986628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity, robustness, and identifiability in stochastic chemical kinetics models.
    Komorowski M; Costa MJ; Rand DA; Stumpf MP
    Proc Natl Acad Sci U S A; 2011 May; 108(21):8645-50. PubMed ID: 21551095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.