These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 18718548)

  • 21. Parameter estimation of kinetic models from metabolic profiles: two-phase dynamic decoupling method.
    Jia G; Stephanopoulos GN; Gunawan R
    Bioinformatics; 2011 Jul; 27(14):1964-70. PubMed ID: 21558155
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Non-linear reduction for kinetic models of metabolic reaction networks.
    Gerdtzen ZP; Daoutidis P; Hu WS
    Metab Eng; 2004 Apr; 6(2):140-54. PubMed ID: 15113567
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes.
    Smallbone K; Messiha HL; Carroll KM; Winder CL; Malys N; Dunn WB; Murabito E; Swainston N; Dada JO; Khan F; Pir P; Simeonidis E; Spasić I; Wishart J; Weichart D; Hayes NW; Jameson D; Broomhead DS; Oliver SG; Gaskell SJ; McCarthy JE; Paton NW; Westerhoff HV; Kell DB; Mendes P
    FEBS Lett; 2013 Sep; 587(17):2832-41. PubMed ID: 23831062
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of a metabolic reaction network from time-series data of metabolite concentrations.
    Sriyudthsak K; Shiraishi F; Hirai MY
    PLoS One; 2013; 8(1):e51212. PubMed ID: 23326311
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A method for analysis and design of metabolism using metabolomics data and kinetic models: Application on lipidomics using a novel kinetic model of sphingolipid metabolism.
    Savoglidis G; da Silveira Dos Santos AX; Riezman I; Angelino P; Riezman H; Hatzimanikatis V
    Metab Eng; 2016 Sep; 37():46-62. PubMed ID: 27113440
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic isotopomer labeling systems. Part II: structural flux identifiability analysis.
    Isermann N; Wiechert W
    Math Biosci; 2003 Jun; 183(2):175-214. PubMed ID: 12711410
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of metabolic system parameters using global optimization methods.
    Polisetty PK; Voit EO; Gatzke EP
    Theor Biol Med Model; 2006 Jan; 3():4. PubMed ID: 16441881
    [TBL] [Abstract][Full Text] [Related]  

  • 28. iSCHRUNK--In Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models of Genome-scale Metabolic Networks.
    Andreozzi S; Miskovic L; Hatzimanikatis V
    Metab Eng; 2016 Jan; 33():158-168. PubMed ID: 26474788
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integration of metabolome data with metabolic networks reveals reporter reactions.
    Cakir T; Patil KR; Onsan Zi; Ulgen KO; Kirdar B; Nielsen J
    Mol Syst Biol; 2006; 2():50. PubMed ID: 17016516
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Current state and challenges for dynamic metabolic modeling.
    Vasilakou E; Machado D; Theorell A; Rocha I; Nöh K; Oldiges M; Wahl SA
    Curr Opin Microbiol; 2016 Oct; 33():97-104. PubMed ID: 27472025
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New experimental and theoretical tools for metabolic engineering of micro-organisms.
    Heijnen JJ
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3a):11-30. PubMed ID: 15954559
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distinguishing enzymes using metabolome data for the hybrid dynamic/static method.
    Ishii N; Nakayama Y; Tomita M
    Theor Biol Med Model; 2007 May; 4():19. PubMed ID: 17511884
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Global identifiability of nonlinear models of biological systems.
    Audoly S; Bellu G; D'Angiò L; Saccomani MP; Cobelli C
    IEEE Trans Biomed Eng; 2001 Jan; 48(1):55-65. PubMed ID: 11235592
    [TBL] [Abstract][Full Text] [Related]  

  • 34. FCDECOMP: decomposition of metabolic networks based on flux coupling relations.
    Rezvan A; Marashi SA; Eslahchi C
    J Bioinform Comput Biol; 2014 Oct; 12(5):1450028. PubMed ID: 25362842
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inferring dynamic properties of biochemical reaction networks from structural knowledge.
    Klipp E; Liebermeister W; Wierling C
    Genome Inform; 2004; 15(1):125-37. PubMed ID: 15712116
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks.
    Slepoy A; Thompson AP; Plimpton SJ
    J Chem Phys; 2008 May; 128(20):205101. PubMed ID: 18513044
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics.
    Visser D; Heijnen JJ
    Metab Eng; 2003 Jul; 5(3):164-76. PubMed ID: 12948750
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics.
    Bordbar A; Yurkovich JT; Paglia G; Rolfsson O; Sigurjónsson ÓE; Palsson BO
    Sci Rep; 2017 Apr; 7():46249. PubMed ID: 28387366
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identifiability and interval identifiability of mammillary and catenary compartmental models with some known rate constants.
    Vicini P; Su H; DiStefano JJ
    Math Biosci; 2000 Oct; 167(2):145-61. PubMed ID: 10998486
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Parameter identifiability analysis and visualization in large-scale kinetic models of biosystems.
    Gábor A; Villaverde AF; Banga JR
    BMC Syst Biol; 2017 May; 11(1):54. PubMed ID: 28476119
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.