These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 18718713)

  • 1. Ecofriendly biodegradation and detoxification of Reactive Red 2 textile dye by newly isolated Pseudomonas sp. SUK1.
    Kalyani DC; Telke AA; Dhanve RS; Jadhav JP
    J Hazard Mater; 2009 Apr; 163(2-3):735-42. PubMed ID: 18718713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decolorization and degradation of xenobiotic azo dye Reactive Yellow-84A and textile effluent by Galactomyces geotrichum.
    Govindwar SP; Kurade MB; Tamboli DP; Kabra AN; Kim PJ; Waghmode TR
    Chemosphere; 2014 Aug; 109():234-8. PubMed ID: 24630455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and characterization of FMN-dependent azoreductases from textile industry effluent identified through metagenomic sequencing.
    Mishra R; Modi A; Pandit R; Sadhwani J; Joshi C; Patel AK
    J Air Waste Manag Assoc; 2024 May; 74(5):335-344. PubMed ID: 38407923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mineralization of a sulfonated textile dye Reactive Red 31 from simulated wastewater using pellets of
    Khan R; Fulekar MH
    Bioresour Bioprocess; 2017; 4(1):23. PubMed ID: 28580232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decolourization and detoxification of Reactive Red-195 azo dye by Staphylococcus caprae isolated from textile effluent.
    Yadav M; Singh AL
    Folia Microbiol (Praha); 2024 Jun; ():. PubMed ID: 38896188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular characterization of azoreductase and its potential for the decolorization of Remazol Red R and Acid Blue 29.
    Mustafa G; Zahid MT; Bharat Kurade M; Mahadeo Patil S; Shakoori FR; Shafiq Z; Ihsan S; Ahn Y; Khan AA; Gacem A; Jeon BH
    Environ Pollut; 2023 Oct; 335():122253. PubMed ID: 37499970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decolorization and detoxification of Brilliant Crocein GR by a newly enriched thermophilic consortium.
    Tian F; Guo G; Fu W; Li S; Ding K; Yang F; Liang C
    J Environ Manage; 2024 Apr; 356():120623. PubMed ID: 38518494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unveiling the azo-reductase mechanism in
    Samuchiwal S; Sahu A; Selvaraju K; Singh S; Malik A
    J Biomol Struct Dyn; 2024 Jan; ():1-14. PubMed ID: 38284378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meta-genome analysis of a newly enriched azo dyes detoxification halo-thermophilic bacterial consortium.
    Tian F; Wang Y; Guo G; Ding K; Yang F; Wang C; Wang H; Yan M
    Environ Res; 2023 Nov; 237(Pt 1):116828. PubMed ID: 37558110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation of crystal violet by newly isolated bacteria.
    Kwak SJ; Park J; Sim Y; Choi H; Cho J; Lee YM
    PeerJ; 2024; 12():e17442. PubMed ID: 38818456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerated biodecolorization and detoxification of synthetic textile dye Acid Maroon V by bacterial consortium under redox mediator system.
    Patel Y; Gupte A
    3 Biotech; 2023 Feb; 13(2):51. PubMed ID: 36685318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Streptomyces spp. as biocatalyst sources in pulp and paper and textile industries: Biodegradation, bioconversion and valorization of waste.
    Cuebas-Irizarry MF; Grunden AM
    Microb Biotechnol; 2024 Jan; 17(1):e14258. PubMed ID: 37017414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of
    Abdulmohsen KDA; Alimi FR; Mechi L; Ahmed A O; Asma K A A A; Eida Mohammad A; Ali Khan MW
    Bioinformation; 2023; 19(9):893-900. PubMed ID: 37928487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradation and Decolorization of Crystal Violet Dye by Cocultivation with Fungi and Bacteria.
    Tian Y; Wu K; Lin S; Shi M; Liu Y; Su X; Islam R
    ACS Omega; 2024 Feb; 9(7):7668-7678. PubMed ID: 38405495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Successful cultivation of edible fungi on textile waste offers a new avenue for bioremediation and potential food production.
    Hazelgrove L; Moody SC
    Sci Rep; 2024 May; 14(1):11510. PubMed ID: 38769087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combatting synthetic dye toxicity through exploring the potential of lignin peroxidase from Pseudomonas fluorescence LiP RL5.
    Rathour RK; Rana N; Sharma V; Sharma N; Bhatt AK; Bhatia RK
    Environ Sci Pollut Res Int; 2024 Aug; ():. PubMed ID: 39103577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative static and shaking culture of metabolite derived from methyl red degradation by
    Sari IP; Simarani K
    R Soc Open Sci; 2019 Jul; 6(7):190152. PubMed ID: 31417722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methyl Red degradation by a subseafloor fungus
    Xu H; Zheng HY; Liu CH
    3 Biotech; 2024 Sep; 14(9):202. PubMed ID: 39157422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BiodEnz:A database of biodegrading enzymes.
    Sugumar S; Thangam B
    Bioinformation; 2012; 8(1):40-2. PubMed ID: 22359433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decolorization and detoxification of Congo red and textile industry effluent by an isolated bacterium Pseudomonas sp. SU-EBT.
    Telke AA; Joshi SM; Jadhav SU; Tamboli DP; Govindwar SP
    Biodegradation; 2010 Apr; 21(2):283-96. PubMed ID: 19774467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.