These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 18718785)

  • 41. Use of smartphones and tablets in radiographic evaluation: accuracy of caries detection on bitewing radiographs.
    Melo CA; Santos MAL; Menezes LS; Santana FS; Melo MFB; Takeshita WM
    Gen Dent; 2021; 69(4):28-34. PubMed ID: 34185665
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of the number of basis images and projection array on caries detection using tuned aperture computed tomography (TACT).
    Abreu M; Tyndall DA; Ludlow JB; Nortjé CJ
    Dentomaxillofac Radiol; 2002 Jan; 31(1):24-31. PubMed ID: 11803385
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Detection of proximal caries in vitro using standard and task-specific enhanced images from a storage phosphor plate system.
    Li G; Sanderink GC; Berkhout WE; Syriopoulos K; van der Stelt PF
    Caries Res; 2007; 41(3):231-4. PubMed ID: 17426405
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A new screening method to detect proximal dental caries using fluorescence imaging.
    Kim ES; Lee ES; Kang SM; Jung EH; de Josselin de Jong E; Jung HI; Kim BI
    Photodiagnosis Photodyn Ther; 2017 Dec; 20():257-262. PubMed ID: 29079349
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Prediction of Radiation-Related Dental Caries Through PyRadiomics Features and Artificial Neural Network on Panoramic Radiography.
    De Araujo Faria V; Azimbagirad M; Viani Arruda G; Fernandes Pavoni J; Cezar Felipe J; Dos Santos EMCMF; Murta Junior LO
    J Digit Imaging; 2021 Oct; 34(5):1237-1248. PubMed ID: 34254199
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Prediction of pulp exposure risk of carious pulpitis based on deep learning.
    Wang L; Wu F; Xiao M; Chen YX; Wu L
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2023 Apr; 41(2):218-224. PubMed ID: 37056189
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of display monitor devices on intra-oral radiographic caries diagnosis.
    Araki K; Fujikura M; Sano T
    Clin Oral Investig; 2015 Nov; 19(8):1875-9. PubMed ID: 25595866
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The use of bitewing radiographs in the management of dental caries: scientific and practical considerations.
    Pitts NB
    Dentomaxillofac Radiol; 1996 Jan; 25(1):5-16. PubMed ID: 9084279
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification of spinal deformity classification with total curvature analysis and artificial neural network.
    Lin H
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):376-82. PubMed ID: 18232388
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of image magnification of digitized bitewing radiographs on approximal caries detection: an in vitro study.
    Møystad A; Svanaes DB; Larheim TA; Gröndahl HG
    Dentomaxillofac Radiol; 1995 Nov; 24(4):255-9. PubMed ID: 9161171
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Occlusal caries detection: a comparison of a laser fluorescence system and conventional methods.
    Burin C; Burin C; Loguercio AD; Grande RH; Reis A
    Pediatr Dent; 2005; 27(4):307-12. PubMed ID: 16317971
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Artificial neural networks in mammography: application to decision making in the diagnosis of breast cancer.
    Wu Y; Giger ML; Doi K; Vyborny CJ; Schmidt RA; Metz CE
    Radiology; 1993 Apr; 187(1):81-7. PubMed ID: 8451441
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Detection of proximal caries with high-resolution and standard resolution digital radiographic systems.
    Berkhout WE; Verheij JG; Syriopoulos K; Li G; Sanderink GC; van der Stelt PF
    Dentomaxillofac Radiol; 2007 May; 36(4):204-10. PubMed ID: 17536087
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Histologic and radiographic assessment of caries-like lesions localized at the crown margin.
    Zoellner A; Diemer B; Weber HP; Stassinakis A; Gaengler P
    J Prosthet Dent; 2002 Jul; 88(1):54-9. PubMed ID: 12239481
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Usefulness of an artificial neural network for differentiating benign from malignant pulmonary nodules on high-resolution CT: evaluation with receiver operating characteristic analysis.
    Matsuki Y; Nakamura K; Watanabe H; Aoki T; Nakata H; Katsuragawa S; Doi K
    AJR Am J Roentgenol; 2002 Mar; 178(3):657-63. PubMed ID: 11856693
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neural network-based computer-aided diagnosis in distinguishing malignant from benign solitary pulmonary nodules by computed tomography.
    Chen H; Wang XH; Ma DQ; Ma BR
    Chin Med J (Engl); 2007 Jul; 120(14):1211-5. PubMed ID: 17697569
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Proximal caries detection: Sirona Sidexis versus Kodak Ektaspeed Plus.
    Khan EA; Tyndall DA; Ludlow JB; Caplan D
    Gen Dent; 2005; 53(1):43-8. PubMed ID: 15779222
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of microscopy and radiography as gold standards in radiographic caries diagnosis.
    Price C
    Dentomaxillofac Radiol; 2000 Jan; 29(1):61-3. PubMed ID: 11203541
    [No Abstract]   [Full Text] [Related]  

  • 59. Diagnostic accuracy of proximal caries by digital radiographs: an in vivo and in vitro comparative study.
    Li G; Qu XM; Chen Y; Zhang J; Zhang ZY; Ma XC
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2010 Mar; 109(3):463-7. PubMed ID: 20097105
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Digital camera resolution and proximal caries detection.
    Prapayasatok S; Janhom A; Verochana K; Pramojanee S
    Dentomaxillofac Radiol; 2006 Jul; 35(4):253-7. PubMed ID: 16798921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.