These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

589 related articles for article (PubMed ID: 18718841)

  • 1. Heat shock protein 90 regulates development in Dictyostelium discoideum.
    Sawarkar R; Roy N; Rao S; Raman S; Venketesh S; Suguna K; Tatu U
    J Mol Biol; 2008 Oct; 383(1):24-35. PubMed ID: 18718841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel C-terminal homologue of Aha1 co-chaperone binds to heat shock protein 90 and stimulates its ATPase activity in Entamoeba histolytica.
    Singh M; Shah V; Tatu U
    J Mol Biol; 2014 Apr; 426(8):1786-98. PubMed ID: 24486610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic studies on Hsp90 inhibition by ansamycin derivatives.
    Onuoha SC; Mukund SR; Coulstock ET; Sengerovà B; Shaw J; McLaughlin SH; Jackson SE
    J Mol Biol; 2007 Sep; 372(2):287-97. PubMed ID: 17662999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel chaperone-activity-reducing mechanism of the 90-kDa molecular chaperone HSP90.
    Itoh H; Ogura M; Komatsuda A; Wakui H; Miura AB; Tashima Y
    Biochem J; 1999 Nov; 343 Pt 3(Pt 3):697-703. PubMed ID: 10527951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in spatial and temporal localization of Dictyostelium homologues of TRAP1 and GRP94 revealed by immunoelectron microscopy.
    Yamaguchi H; Morita T; Amagai A; Maeda Y
    Exp Cell Res; 2005 Feb; 303(2):415-24. PubMed ID: 15652353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of the TRAP-1 homologue, Dd-TRAP1, in spore differentiation during Dictyostelium development.
    Morita T; Yamaguchi H; Amagai A; Maeda Y
    Exp Cell Res; 2005 Feb; 303(2):425-31. PubMed ID: 15652354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteome-wide changes induced by the Hsp90 inhibitor, geldanamycin in anaplastic large cell lymphoma cells.
    Schumacher JA; Crockett DK; Elenitoba-Johnson KS; Lim MS
    Proteomics; 2007 Aug; 7(15):2603-16. PubMed ID: 17610208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat shock protein 90 as a drug target against protozoan infections: biochemical characterization of HSP90 from Plasmodium falciparum and Trypanosoma evansi and evaluation of its inhibitor as a candidate drug.
    Pallavi R; Roy N; Nageshan RK; Talukdar P; Pavithra SR; Reddy R; Venketesh S; Kumar R; Gupta AK; Singh RK; Yadav SC; Tatu U
    J Biol Chem; 2010 Dec; 285(49):37964-75. PubMed ID: 20837488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inside the Hsp90 inhibitors binding mode through induced fit docking.
    Lauria A; Ippolito M; Almerico AM
    J Mol Graph Model; 2009 Feb; 27(6):712-22. PubMed ID: 19084447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hsp90 protein in fission yeast Swo1p and UCS protein Rng3p facilitate myosin II assembly and function.
    Mishra M; D'souza VM; Chang KC; Huang Y; Balasubramanian MK
    Eukaryot Cell; 2005 Mar; 4(3):567-76. PubMed ID: 15755919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome.
    Imai J; Maruya M; Yashiroda H; Yahara I; Tanaka K
    EMBO J; 2003 Jul; 22(14):3557-67. PubMed ID: 12853471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of cysteine protease inhibitors that belong to cystatin family 1 in the cellular slime mold Dictyostelium discoideum.
    El-Halawany MS; Ohkouchi S; Shibata H; Hitomi K; Maki M
    Biol Chem; 2004 Jun; 385(6):547-50. PubMed ID: 15255188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat shock protein-90 inhibitors: a chronicle from geldanamycin to today's agents.
    Chiosis G; Caldas Lopes E; Solit D
    Curr Opin Investig Drugs; 2006 Jun; 7(6):534-41. PubMed ID: 16784024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterization of heat-shock protein 90 from Oryza sativa and crystal structure of its N-terminal domain.
    Raman S; Suguna K
    Acta Crystallogr F Struct Biol Commun; 2015 Jun; 71(Pt 6):688-96. PubMed ID: 26057797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C-terminal regions of Hsp90 are important for trapping the nucleotide during the ATPase cycle.
    Weikl T; Muschler P; Richter K; Veit T; Reinstein J; Buchner J
    J Mol Biol; 2000 Nov; 303(4):583-92. PubMed ID: 11054293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical and structural studies of the interaction of Cdc37 with Hsp90.
    Zhang W; Hirshberg M; McLaughlin SH; Lazar GA; Grossmann JG; Nielsen PR; Sobott F; Robinson CV; Jackson SE; Laue ED
    J Mol Biol; 2004 Jul; 340(4):891-907. PubMed ID: 15223329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chaperone activation of the hepadnaviral reverse transcriptase for template RNA binding is established by the Hsp70 and stimulated by the Hsp90 system.
    Stahl M; Retzlaff M; Nassal M; Beck J
    Nucleic Acids Res; 2007; 35(18):6124-36. PubMed ID: 17804463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorine- and rhenium-containing geldanamycin derivatives as leads for the development of molecular probes for imaging Hsp90.
    Wuest F; Bouvet V; Mai B; LaPointe P
    Org Biomol Chem; 2012 Sep; 10(33):6724-31. PubMed ID: 22825378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface charge and hydrophobicity determine ErbB2 binding to the Hsp90 chaperone complex.
    Xu W; Yuan X; Xiang Z; Mimnaugh E; Marcu M; Neckers L
    Nat Struct Mol Biol; 2005 Feb; 12(2):120-6. PubMed ID: 15643424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molybdate inhibits hsp90, induces structural changes in its C-terminal domain, and alters its interactions with substrates.
    Hartson SD; Thulasiraman V; Huang W; Whitesell L; Matts RL
    Biochemistry; 1999 Mar; 38(12):3837-49. PubMed ID: 10090774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.