BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 18719122)

  • 1. Mass spectrometry-based discovery of circadian peptides.
    Hatcher NG; Atkins N; Annangudi SP; Forbes AJ; Kelleher NL; Gillette MU; Sweedler JV
    Proc Natl Acad Sci U S A; 2008 Aug; 105(34):12527-32. PubMed ID: 18719122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in Mass Spectrometric Tools for Probing Neuropeptides.
    Buchberger A; Yu Q; Li L
    Annu Rev Anal Chem (Palo Alto Calif); 2015; 8():485-509. PubMed ID: 26070718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying and Measuring Endogenous Peptides through Peptidomics.
    Checco JW
    ACS Chem Neurosci; 2023 Oct; 14(20):3728-3731. PubMed ID: 37751547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A class of secreted mammalian peptides with potential to expand cell-cell communication.
    Wiggenhorn AL; Abuzaid HZ; Coassolo L; Li VL; Tanzo JT; Wei W; Lyu X; Svensson KJ; Long JZ
    bioRxiv; 2023 Jun; ():. PubMed ID: 37333131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endogenous peptide discovery of the rat circadian clock: a focused study of the suprachiasmatic nucleus by ultrahigh performance tandem mass spectrometry.
    Lee JE; Atkins N; Hatcher NG; Zamdborg L; Gillette MU; Sweedler JV; Kelleher NL
    Mol Cell Proteomics; 2010 Feb; 9(2):285-97. PubMed ID: 19955084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative peptidomics for discovery of circadian-related peptides from the rat suprachiasmatic nucleus.
    Lee JE; Zamdborg L; Southey BR; Atkins N; Mitchell JW; Li M; Gillette MU; Kelleher NL; Sweedler JV
    J Proteome Res; 2013 Feb; 12(2):585-93. PubMed ID: 23256577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver.
    Mauvoisin D; Wang J; Jouffe C; Martin E; Atger F; Waridel P; Quadroni M; Gachon F; Naef F
    Proc Natl Acad Sci U S A; 2014 Jan; 111(1):167-72. PubMed ID: 24344304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-vivo quantitative proteomics reveals a key contribution of post-transcriptional mechanisms to the circadian regulation of liver metabolism.
    Robles MS; Cox J; Mann M
    PLoS Genet; 2014 Jan; 10(1):e1004047. PubMed ID: 24391516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ras Activity Oscillates in the Mouse Suprachiasmatic Nucleus and Modulates Circadian Clock Dynamics.
    Serchov T; Jilg A; Wolf CT; Radtke I; Stehle JH; Heumann R
    Mol Neurobiol; 2016 Apr; 53(3):1843-1855. PubMed ID: 25762011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circadian integration of glutamatergic signals by little SAAS in novel suprachiasmatic circuits.
    Atkins N; Mitchell JW; Romanova EV; Morgan DJ; Cominski TP; Ecker JL; Pintar JE; Sweedler JV; Gillette MU
    PLoS One; 2010 Sep; 5(9):e12612. PubMed ID: 20830308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomics in Circadian Biology.
    Mauvoisin D; Gachon F
    J Mol Biol; 2020 May; 432(12):3565-3577. PubMed ID: 31843517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. miR-132/212 Modulates Seasonal Adaptation and Dendritic Morphology of the Central Circadian Clock.
    Mendoza-Viveros L; Chiang CK; Ong JLK; Hegazi S; Cheng AH; Bouchard-Cannon P; Fana M; Lowden C; Zhang P; Bothorel B; Michniewicz MG; Magill ST; Holmes MM; Goodman RH; Simonneaux V; Figeys D; Cheng HM
    Cell Rep; 2017 Apr; 19(3):505-520. PubMed ID: 28423315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Suprachiasmatic Nucleus at 50: Looking Back, Then Looking Forward.
    Ono D; Weaver DR; Hastings MH; Honma KI; Honma S; Silver R
    J Biol Rhythms; 2024 Apr; 39(2):135-165. PubMed ID: 38366616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microanalytical Mass Spectrometry with Super-Resolution Microscopy Reveals a Proteome Transition During Development of the Brain's Circadian Pacemaker.
    Choi SB; Vatan T; Alexander TA; Zhang C; Mitchell SM; Speer CM; Nemes P
    Anal Chem; 2023 Oct; 95(41):15208-15216. PubMed ID: 37792996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perspectives of colon-specific drug delivery in the management of morning symptoms of rheumatoid arthritis.
    Jain SN; Patil SB
    Inflammopharmacology; 2023 Feb; 31(1):253-264. PubMed ID: 36544060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microenvironmental Analysis and Control for Local Cells under Confluent Conditions via a Capillary-Based Microfluidic Device.
    Ota N; Tanaka N; Sato A; Shen Y; Yalikun Y; Tanaka Y
    Anal Chem; 2022 Nov; 94(47):16299-16307. PubMed ID: 36383697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mice lacking proSAAS display alterations in emotion, consummatory behavior and circadian entrainment.
    Aryal DK; Rodriguiz RM; Nguyen NL; Pease MW; Morgan DJ; Pintar J; Fricker LD; Wetsel WC
    Genes Brain Behav; 2022 Sep; 21(7):e12827. PubMed ID: 35878875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic view of an amyloid dodecamer exhibiting selective cellular toxic vulnerability in acute brain slices.
    Gray ALH; Sawaya MR; Acharyya D; Lou J; Edington EM; Best MD; Prosser RA; Eisenberg DS; Do TD
    Protein Sci; 2022 Mar; 31(3):716-727. PubMed ID: 34954854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying Receptors for Neuropeptides and Peptide Hormones: Challenges and Recent Progress.
    Abid MSR; Mousavi S; Checco JW
    ACS Chem Biol; 2021 Feb; 16(2):251-263. PubMed ID: 33539706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secreted Chaperones in Neurodegeneration.
    Chaplot K; Jarvela TS; Lindberg I
    Front Aging Neurosci; 2020; 12():268. PubMed ID: 33192447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.