BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 18719124)

  • 1. Stress resistance and signal fidelity independent of nuclear MAPK function.
    Westfall PJ; Patterson JC; Chen RE; Thorner J
    Proc Natl Acad Sci U S A; 2008 Aug; 105(34):12212-7. PubMed ID: 18719124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cdc42-Specific GTPase-Activating Protein Rga1 Squelches Crosstalk between the High-Osmolarity Glycerol (HOG) and Mating Pheromone Response MAPK Pathways.
    Patterson JC; Goupil LS; Thorner J
    Biomolecules; 2021 Oct; 11(10):. PubMed ID: 34680163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of mitogen-activated protein kinase signaling specificity in response to hyperosmotic stress: use of an analog-sensitive HOG1 allele.
    Westfall PJ; Thorner J
    Eukaryot Cell; 2006 Aug; 5(8):1215-28. PubMed ID: 16896207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yeast osmoregulation.
    Hohmann S; Krantz M; Nordlander B
    Methods Enzymol; 2007; 428():29-45. PubMed ID: 17875410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response to hyperosmotic stress.
    Saito H; Posas F
    Genetics; 2012 Oct; 192(2):289-318. PubMed ID: 23028184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initiation of the transcriptional response to hyperosmotic shock correlates with the potential for volume recovery.
    Geijer C; Medrala-Klein D; Petelenz-Kurdziel E; Ericsson A; Smedh M; Andersson M; Goksör M; Nadal-Ribelles M; Posas F; Krantz M; Nordlander B; Hohmann S
    FEBS J; 2013 Aug; 280(16):3854-67. PubMed ID: 23758973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A systems biology analysis of long and short-term memories of osmotic stress adaptation in fungi.
    You T; Ingram P; Jacobsen MD; Cook E; McDonagh A; Thorne T; Lenardon MD; de Moura AP; Romano MC; Thiel M; Stumpf M; Gow NA; Haynes K; Grebogi C; Stark J; Brown AJ
    BMC Res Notes; 2012 May; 5():258. PubMed ID: 22631601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of the Hog1 MAPK by the Ssk2/Ssk22 MAP3Ks, in the absence of the osmosensors, is not sufficient to trigger osmostress adaptation in Saccharomyces cerevisiae.
    Vázquez-Ibarra A; Subirana L; Ongay-Larios L; Kawasaki L; Rojas-Ortega E; Rodríguez-González M; de Nadal E; Posas F; Coria R
    FEBS J; 2018 Mar; 285(6):1079-1096. PubMed ID: 29341399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yeast Hog1 proteins are sequestered in stress granules during high-temperature stress.
    Shiraishi K; Hioki T; Habata A; Yurimoto H; Sakai Y
    J Cell Sci; 2018 Jan; 131(1):. PubMed ID: 29183915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways.
    Wojda I; Alonso-Monge R; Bebelman JP; Mager WH; Siderius M
    Microbiology (Reading); 2003 May; 149(Pt 5):1193-1204. PubMed ID: 12724381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitogen-activated protein kinase Hog1 mediates adaptation to G1 checkpoint arrest during arsenite and hyperosmotic stress.
    Migdal I; Ilina Y; Tamás MJ; Wysocki R
    Eukaryot Cell; 2008 Aug; 7(8):1309-17. PubMed ID: 18552285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting the MEF2-like transcription factor Smp1 by the stress-activated Hog1 mitogen-activated protein kinase.
    de Nadal E; Casadomé L; Posas F
    Mol Cell Biol; 2003 Jan; 23(1):229-37. PubMed ID: 12482976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different signalling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae.
    Rep M; Albertyn J; Thevelein JM; Prior BA; Hohmann S
    Microbiology (Reading); 1999 Mar; 145 ( Pt 3)():715-727. PubMed ID: 10217506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ptc1, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogen-activated protein kinase Hog1.
    Warmka J; Hanneman J; Lee J; Amin D; Ota I
    Mol Cell Biol; 2001 Jan; 21(1):51-60. PubMed ID: 11113180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osmolarity hypersensitivity of hog1 deleted mutants is suppressed by mutation in KSS1 in budding yeast Saccharomyces cerevisiae.
    Lee SJ; Park SY; Na JG; Kim YJ
    FEMS Microbiol Lett; 2002 Mar; 209(1):9-14. PubMed ID: 12007647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rewiring yeast osmostress signalling through the MAPK network reveals essential and non-essential roles of Hog1 in osmoadaptation.
    Babazadeh R; Furukawa T; Hohmann S; Furukawa K
    Sci Rep; 2014 Apr; 4():4697. PubMed ID: 24732094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methylated metabolite of arsenite blocks glycerol production in yeast by inhibition of glycerol-3-phosphate dehydrogenase.
    Lee J; Levin DE
    Mol Biol Cell; 2019 Aug; 30(17):2134-2140. PubMed ID: 31141459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In yeast, loss of Hog1 leads to osmosensitivity of autophagy.
    Prick T; Thumm M; Köhrer K; Häussinger D; Vom Dahl S
    Biochem J; 2006 Feb; 394(Pt 1):153-61. PubMed ID: 16321140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vacuolar H+-ATPase works in parallel with the HOG pathway to adapt Saccharomyces cerevisiae cells to osmotic stress.
    Li SC; Diakov TT; Rizzo JM; Kane PM
    Eukaryot Cell; 2012 Mar; 11(3):282-91. PubMed ID: 22210831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissection of the HOG pathway activated by hydrogen peroxide in Saccharomyces cerevisiae.
    Lee YM; Kim E; An J; Lee Y; Choi E; Choi W; Moon E; Kim W
    Environ Microbiol; 2017 Feb; 19(2):584-597. PubMed ID: 27554843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.