These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 18720015)

  • 21. Formulation and evaluation of mefenamic acid sustained release matrix pellets.
    Ibrahim MA
    Acta Pharm; 2013 Mar; 63(1):85-98. PubMed ID: 23482315
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction of microcrystalline cellulose and water in granules prepared by a high-shear mixer.
    Suzuki T; Kikuchi H; Yonemochi E; Terada K; Yamamoto K
    Chem Pharm Bull (Tokyo); 2001 Apr; 49(4):373-8. PubMed ID: 11310660
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microcrystalline cellulose-water interaction--a novel approach using thermoporosimetry.
    Luukkonen P; Maloney T; Rantanen J; Paulapuro H; Yliruusi J
    Pharm Res; 2001 Nov; 18(11):1562-9. PubMed ID: 11758764
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extrusion-Spheronization of blends of carbopol 934 and microcrystalline cellulose.
    Gómez-Carracedo A; Alvarez-Lorenzo C; Gómez-Amoza JL; Martínez-Pacheco R; Souto C; Concheiro A
    Drug Dev Ind Pharm; 2001 May; 27(5):381-91. PubMed ID: 11448045
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of chitosan-alginate as alternative pelletization aid to microcrystalline cellulose in extrusion/spheronization.
    Charoenthai N; Kleinebudde P; Puttipipatkhachorn S
    J Pharm Sci; 2007 Sep; 96(9):2469-84. PubMed ID: 17286294
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A protocol for the classification of wet mass in extrusion-spheronization.
    Gao Y; Hong Y; Xian J; Lin X; Shen L; Zhang X; Zhang N; Feng Y
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):996-1005. PubMed ID: 23563104
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of microcrystalline cellulose and silicified microcrystalline cellulose wet masses using a powder rheometer.
    Luukkonen P; Schaefer T; Podczeck F; Newton M; Hellén L; Yliruusi J
    Eur J Pharm Sci; 2001 May; 13(2):143-9. PubMed ID: 11297898
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pre-formulation studies on moisture absorption in microcrystalline cellulose using differential thermo-gravimetric analysis.
    Heng PW; Liew CV; Soh JL
    Chem Pharm Bull (Tokyo); 2004 Apr; 52(4):384-90. PubMed ID: 15056948
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct pelletization in a rotary processor controlled by torque measurements. III. Investigation of microcrystalline cellulose and lactose grade.
    Kristensen J
    AAPS PharmSciTech; 2005 Oct; 6(3):E495-503. PubMed ID: 16354010
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study of effect of excipient source variation on rheological behavior of diltiazem HCl-HPMC wet masses using a mixer torque rheometer.
    Chatlapalli R; Rohera BD
    Int J Pharm; 2002 May; 238(1-2):139-51. PubMed ID: 11996818
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insights into the functionality of pelletization aid in pelletization by extrusion-spheronization.
    Sarkar S; Heng PW; Liew CV
    Pharm Dev Technol; 2013 Feb; 18(1):61-72. PubMed ID: 21981607
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extrusion/spheronization--effect of moisture content and spheronization time on pellet characteristics.
    Iyer RM; Augsburger LL; Pope DG; Shah RD
    Pharm Dev Technol; 1996 Dec; 1(4):325-31. PubMed ID: 9552316
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation into the impact of sub-populations of agglomerates on the particle size distribution and flow properties of conventional microcrystalline cellulose grades.
    Gamble JF; Chiu WS; Tobyn M
    Pharm Dev Technol; 2011 Oct; 16(5):542-8. PubMed ID: 20565228
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The evaluation of modified microcrystalline cellulose for the preparation of pellets with high drug loading by extrusion/spheronization.
    Podczeck F; Knight PE; Newton JM
    Int J Pharm; 2008 Feb; 350(1-2):145-54. PubMed ID: 17905548
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct pelletization in a rotary processor controlled by torque measurements. II: effects of changes in the content of microcrystalline cellulose.
    Kristensen J; Schaefer T; Kleinebudde P
    AAPS PharmSci; 2000; 2(3):E24. PubMed ID: 11741240
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The evaluation of the rheological properties of lactose/microcrystalline cellulose and water mixtures by controlled stress rheometry and the relationship to the production of spherical pellets by extrusion/spheronization.
    MacRitchie KA; Newton JM; Rowe RC
    Eur J Pharm Sci; 2002 Oct; 17(1-2):43-50. PubMed ID: 12356419
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Powdered cellulose as excipient for extrusion-spheronization pellets of a cohesive hydrophobic drug.
    Alvarez L; Concheiro A; Gómez-Amoza JL; Souto C; Martínez-Pacheco R
    Eur J Pharm Biopharm; 2003 May; 55(3):291-5. PubMed ID: 12754003
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Massing in high shear wet granulation can simultaneously improve powder flow and deteriorate powder compaction: a double-edged sword.
    Shi L; Feng Y; Sun CC
    Eur J Pharm Sci; 2011 May; 43(1-2):50-6. PubMed ID: 21443948
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of starch-based pellets via extrusion/spheronisation.
    Dukić A; Mens R; Adriaensens P; Foreman P; Gelan J; Remon JP; Vervaet C
    Eur J Pharm Biopharm; 2007 Apr; 66(1):83-94. PubMed ID: 17045467
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The change in characteristics of microcrystalline cellulose during wet granulation using a high-shear mixer.
    Suzuki T; Kikuchi H; Yamamura S; Terada K; Yamamoto K
    J Pharm Pharmacol; 2001 May; 53(5):609-16. PubMed ID: 11370700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.