These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 18720498)

  • 1. Inducible nature of the enzymes involved in catabolism of caffeine and related methylxanthines.
    Dash SS; Gummadi SN
    J Basic Microbiol; 2008 Aug; 48(4):227-33. PubMed ID: 18720498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemotaxis of Pseudomonas sp. to caffeine and related methylxanthines.
    Dash SS; Sailaja NS; Gummadi SN
    J Basic Microbiol; 2008 Apr; 48(2):130-4. PubMed ID: 18383225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catabolic pathways and biotechnological applications of microbial caffeine degradation.
    Dash SS; Gummadi SN
    Biotechnol Lett; 2006 Dec; 28(24):1993-2002. PubMed ID: 17009088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of N-methylpurines by a Pseudomonas putida strain isolated by enrichment on caffeine as the sole source of carbon and nitrogen.
    Woolfolk CA
    J Bacteriol; 1975 Sep; 123(3):1088-106. PubMed ID: 1158847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different Catabolism Pathways Triggered by Various Methylxanthines in Caffeine-Tolerant Bacterium
    Ma YX; Wu XH; Wu HS; Dong ZB; Ye JH; Zheng XQ; Liang YR; Lu J
    J Microbiol Biotechnol; 2018 Jul; 28(7):1147-1155. PubMed ID: 29926702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid identification and quantitative validation of a caffeine-degrading pathway in Pseudomonas sp. CES.
    Yu CL; Summers RM; Li Y; Mohanty SK; Subramanian M; Pope RM
    J Proteome Res; 2015 Jan; 14(1):95-106. PubMed ID: 25350919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A preliminary study of caffeine degradation by Pseudomonas sp. GSC 1182.
    Gokulakrishnan S; Chandraraj K; Gummadi SN
    Int J Food Microbiol; 2007 Feb; 113(3):346-50. PubMed ID: 16996632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation kinetics of caffeine and related methylxanthines by induced cells of Pseudomonas sp.
    Dash SS; Gummadi SN
    Curr Microbiol; 2007 Jul; 55(1):56-60. PubMed ID: 17554468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two distinct pathways for metabolism of theophylline and caffeine are coexpressed in Pseudomonas putida CBB5.
    Yu CL; Louie TM; Summers R; Kale Y; Gopishetty S; Subramanian M
    J Bacteriol; 2009 Jul; 191(14):4624-32. PubMed ID: 19447909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution, biosynthesis and catabolism of methylxanthines in plants.
    Ashihara H; Kato M; Crozier A
    Handb Exp Pharmacol; 2011; (200):11-31. PubMed ID: 20859792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Microbial breakdown of caffeine (author's transl)].
    Blecher R
    Zentralbl Bakteriol Orig B; 1976 Jul; 162(1-2):180-3. PubMed ID: 998047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decaffeination and measurement of caffeine content by addicted Escherichia coli with a refactored N-demethylation operon from Pseudomonas putida CBB5.
    Quandt EM; Hammerling MJ; Summers RM; Otoupal PB; Slater B; Alnahhas RN; Dasgupta A; Bachman JL; Subramanian MV; Barrick JE
    ACS Synth Biol; 2013 Jun; 2(6):301-7. PubMed ID: 23654268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic characterization of caffeine degradation by bacteria and its potential applications.
    Summers RM; Mohanty SK; Gopishetty S; Subramanian M
    Microb Biotechnol; 2015 May; 8(3):369-78. PubMed ID: 25678373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced degradation of caffeine and caffeine demethylase production by Pseudomonas sp. in bioreactors under fed-batch mode.
    Gummadi SN; Bhavya B
    Appl Microbiol Biotechnol; 2011 Aug; 91(4):1007-17. PubMed ID: 21573684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioassay for Determining the Concentrations of Caffeine and Individual Methylxanthines in Complex Samples.
    Gutierrez AE; Shah P; Rex AE; Nguyen TC; Kenkare SP; Barrick JE; Mishler DM
    Appl Environ Microbiol; 2019 Dec; 85(23):. PubMed ID: 31540989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid Proteomics to Prospect and Validate Novel Bacterial Metabolism Induced by Environmental Burden.
    Yu CL; Brooks S; Li Y; Subramanian M; Summers R; Pope M
    Methods Enzymol; 2017; 586():379-411. PubMed ID: 28137573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a broad-specificity non-haem iron N-demethylase from Pseudomonas putida CBB5 capable of utilizing several purine alkaloids as sole carbon and nitrogen source.
    Summers RM; Louie TM; Yu CL; Subramanian M
    Microbiology (Reading); 2011 Feb; 157(Pt 2):583-592. PubMed ID: 20966097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constitutive synthesis of enzymes involved in 2-aminophenol metabolism and inducible synthesis of enzymes involved in benzoate, p-hydroxybenzoate, and protocatechuate metabolism in Pseudomonas sp. strain AP-3.
    Takenaka S; Setyorini E; Kim YJ; Murakami S; Aoki K
    Biosci Biotechnol Biochem; 2005 May; 69(5):1033-5. PubMed ID: 15914928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The metabolism of caffeine by a Pseudomonas putida strain.
    Blecher R; Lingens F
    Hoppe Seylers Z Physiol Chem; 1977 Jul; 358(7):807-17. PubMed ID: 561017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel caffeine dehydrogenase in Pseudomonas sp. strain CBB1 oxidizes caffeine to trimethyluric acid.
    Yu CL; Kale Y; Gopishetty S; Louie TM; Subramanian M
    J Bacteriol; 2008 Jan; 190(2):772-6. PubMed ID: 17981969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.