BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 18720785)

  • 1. [Effect of spectra on growth of chlorella and isochrysis].
    Mao AJ; Wang J; Lin XZ; Meng JW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 May; 28(5):991-4. PubMed ID: 18720785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the purification of wastes from the nitrogen fertilizer industry by intensive algal cultures. IV. growth of Chlorella vulgaris in wastes with high nitrogen content in continuous and intermittent light.
    Matusiak K; Mycielski R; Blaszczyk M; Bisz-Konarzewska A
    Acta Microbiol Pol; 1977; 26(1):79-93. PubMed ID: 67757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of chloramphenicol, florfenicol, and thiamphenicol on growth of algae Chlorella pyrenoidosa, Isochrysis galbana, and Tetraselmis chui.
    Lai HT; Hou JH; Su CI; Chen CL
    Ecotoxicol Environ Saf; 2009 Feb; 72(2):329-34. PubMed ID: 18439675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of high zinc concentrations on the growth of Stichococcus bacillaris and Chlorella vulgaris.
    Skowroński T; Rzeczycka M
    Acta Microbiol Pol; 1980; 29(4):389-96. PubMed ID: 6164258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Study on the Visualization of the Biomass of Chlorella sp., Isochrysis galbana, and Spirulina sp. Based on Hyperspectral Imaging Technique].
    Jiang LL; Wet X; Zhao YR; Shao YN; Qiu ZJ; He Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Mar; 36(3):795-9. PubMed ID: 27400526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Spectrophotometry of individual Chlorella cells].
    Belianin VN; Spirov VV; Furiaev EA
    Biofizika; 1975; 20(5):848-52. PubMed ID: 1203272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of light of different spectral composition on pigment accumulation, productivity and effectiveness of use of absorbed energy in photosynthesis during the developmental cycle of Chlorella].
    Brandt AB; Kiseleva MI; Sharipov KA
    Biofizika; 1975; 20(5):862-6. PubMed ID: 1203274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical compartmentation of vegetating algae species as a basis for their growth-specific characterization.
    Gerashchenko BI; Kosaka T; Hosoya H
    Cytometry; 2002 Jul; 48(3):153-8. PubMed ID: 12116361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of light-emitting diodes in bioreactors: flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa).
    Matthijs HC; Balke H; van Hes UM; Kroon BM; Mur LR; Binot RA
    Biotechnol Bioeng; 1996 Apr; 50(1):98-107. PubMed ID: 18626903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral shifting by dyes to enhance algae growth.
    Prokop A; Quinn MF; Fekri M; Murad M; Ahmed SA
    Biotechnol Bioeng; 1984 Nov; 26(11):1313-22. PubMed ID: 18551655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific-wavelength visible light irradiation inhibits bacterial growth of Porphyromonas gingivalis.
    Fukui M; Yoshioka M; Satomura K; Nakanishi H; Nagayama M
    J Periodontal Res; 2008 Apr; 43(2):174-8. PubMed ID: 18302619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchronous-scan fluorescence spectra of Chlorella vulgaris solution.
    Liu X; Tao S; Deng N
    Chemosphere; 2005 Sep; 60(11):1550-4. PubMed ID: 15961140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attenuation of monochromatic and polychromatic lights in Chlorella vulgaris suspensions.
    Yun YS; Park JM
    Appl Microbiol Biotechnol; 2001 Jun; 55(6):765-70. PubMed ID: 11525626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the purification of wastewater from the nitrogen fertilizer industry by intensive algal cultures. I. Growth of Chlorella vulgaris in wastes.
    Matusiak K
    Acta Microbiol Pol; 1976; 25(3):233-42. PubMed ID: 62500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of cellular density on determination of EC(50) in microalgal growth inhibition tests.
    Moreno-Garrido I; Lubián LM; Soares AM
    Ecotoxicol Environ Saf; 2000 Oct; 47(2):112-6. PubMed ID: 11023688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Productivity of Chlorella sorokiniana in a short light-path (SLP) panel photobioreactor under high irradiance.
    Cuaresma M; Janssen M; Vílchez C; Wijffels RH
    Biotechnol Bioeng; 2009 Oct; 104(2):352-9. PubMed ID: 19517522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Growth and photosynthetic efficiency of Chlorella during intermittent irradiation].
    Terskov IA; Trenkenshu AP; Sid'ko FIa; Belianin VN
    Dokl Akad Nauk SSSR; 1976; 230(4):998-1001. PubMed ID: 1009828
    [No Abstract]   [Full Text] [Related]  

  • 18. [Characteristics of absorption spectra of phytoplankton].
    Zhang QQ; Wang L; Lei SH; Zhu CJ; Wang XL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Sep; 26(9):1676-80. PubMed ID: 17112045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo microspectroscopy monitoring of chromium effects on the photosynthetic and photoreceptive apparatus of Eudorina unicocca and Chlorella kessleri.
    Juarez AB; Barsanti L; Passarelli V; Evangelista V; Vesentini N; Conforti V; Gualtieri P
    J Environ Monit; 2008 Nov; 10(11):1313-8. PubMed ID: 18974900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of adaptation to light of different spectral composition on photosynthesis of Chlorella cells].
    Brandt AB; Kiseleva MI
    Biofizika; 1980; 25(6):1056-9. PubMed ID: 7448218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.