These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 18720978)

  • 1. Quantitative optical trapping of single gold nanorods.
    Selhuber-Unkel C; Zins I; Schubert O; Sönnichsen C; Oddershede LB
    Nano Lett; 2008 Sep; 8(9):2998-3003. PubMed ID: 18720978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity.
    Huang WH; Li SF; Xu HT; Xiang ZX; Long YB; Deng HD
    Opt Express; 2018 Mar; 26(5):6202-6213. PubMed ID: 29529812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing Photothermal Effects on Optically Trapped Gold Nanorods by Simultaneous Plasmon Spectroscopy and Brownian Dynamics Analysis.
    Andrén D; Shao L; Odebo Länk N; Aćimović SS; Johansson P; Käll M
    ACS Nano; 2017 Oct; 11(10):10053-10061. PubMed ID: 28872830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-color laser printing of individual gold nanorods.
    Do J; Fedoruk M; Jäckel F; Feldmann J
    Nano Lett; 2013 Sep; 13(9):4164-8. PubMed ID: 23927535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio.
    Fang Y; Chang WS; Willingham B; Swanglap P; Dominguez-Medina S; Link S
    ACS Nano; 2012 Aug; 6(8):7177-84. PubMed ID: 22830934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absorption Spectroscopy of Single Optically Trapped Gold Nanorods.
    Li Z; Mao W; Devadas MS; Hartland GV
    Nano Lett; 2015 Nov; 15(11):7731-5. PubMed ID: 26495877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold nanorod assisted intracellular optical manipulation of silica microspheres.
    Haro-González P; Rodríguez Sevilla P; Sanz-Rodríguez F; Martín Rodríguez E; Bogdan N; Capobianco JA; Dholakia K; Jaque D
    Opt Express; 2014 Aug; 22(16):19735-47. PubMed ID: 25321056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Longitudinal surface plasmon resonance based gold nanorod biosensors for mass spectrometry.
    Castellana ET; Gamez RC; Gómez ME; Russell DH
    Langmuir; 2010 Apr; 26(8):6066-70. PubMed ID: 20302283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study.
    Trojek J; Chvátal L; Zemánek P
    J Opt Soc Am A Opt Image Sci Vis; 2012 Jul; 29(7):1224-36. PubMed ID: 22751387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast studies of gold, nickel, and palladium nanorods.
    Sando GM; Berry AD; Owrutsky JC
    J Chem Phys; 2007 Aug; 127(7):074705. PubMed ID: 17718625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-field optical imaging of plasmon modes in gold nanorods.
    Imura K; Nagahara T; Okamoto H
    J Chem Phys; 2005 Apr; 122(15):154701. PubMed ID: 15945650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-photon luminescence properties of gold nanorods.
    Wang T; Halaney D; Ho D; Feldman MD; Milner TE
    Biomed Opt Express; 2013 Apr; 4(4):584-95. PubMed ID: 23577293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold Nanobipyramid-Directed Growth of Length-Variable Silver Nanorods with Multipolar Plasmon Resonances.
    Zhuo X; Zhu X; Li Q; Yang Z; Wang J
    ACS Nano; 2015 Jul; 9(7):7523-35. PubMed ID: 26135608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single gold nanorods as optical probes for spectral imaging.
    Wackenhut F; Failla AV; Meixner AJ
    Anal Bioanal Chem; 2015 May; 407(14):4029-34. PubMed ID: 25855152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Why single-beam optical tweezers trap gold nanowires in three dimensions.
    Yan Z; Pelton M; Vigderman L; Zubarev ER; Scherer NF
    ACS Nano; 2013 Oct; 7(10):8794-800. PubMed ID: 24041038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon resonance-based optical trapping of single and multiple Au nanoparticles.
    Toussaint KC; Liu M; Pelton M; Pesic J; Guffey MJ; Guyot-Sionnest P; Scherer NF
    Opt Express; 2007 Sep; 15(19):12017-29. PubMed ID: 19547566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarization-dependent scanning photoionization microscopy: ultrafast plasmon-mediated electron ejection dynamics in single Au nanorods.
    Schweikhard V; Grubisic A; Baker TA; Thomann I; Nesbitt DJ
    ACS Nano; 2011 May; 5(5):3724-35. PubMed ID: 21466166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control.
    Ling L; Guo HL; Zhong XL; Huang L; Li JF; Gan L; Li ZY
    Nanotechnology; 2012 Jun; 23(21):215302. PubMed ID: 22551556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-spherical gold nanoparticles trapped in optical tweezers: shape matters.
    Brzobohatý O; Šiler M; Trojek J; Chvátal L; Karásek V; Zemánek P
    Opt Express; 2015 Apr; 23(7):8179-89. PubMed ID: 25968657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.