These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 187214)
1. Copper and the oxidation of hemoglobin: a comparison of horse and human hemoglobins. Rifkind JM; Lauer LD; Chiang SC; Li NC Biochemistry; 1976 Nov; 15(24):5337-43. PubMed ID: 187214 [TBL] [Abstract][Full Text] [Related]
2. Interaction between bound cupric ion and spin-labeled cysteine beta-93 in human and horse hemoglobins. Antholine WE; Taketa F; Wang JT; Manoharan PT; Rifkind JM J Inorg Biochem; 1985 Oct; 25(2):95-108. PubMed ID: 2997391 [TBL] [Abstract][Full Text] [Related]
3. Interaction of copper(II) with hemoglobins in the unliganded conformation. Manoharan PT; Alston K; Rifkind JM Biochemistry; 1989 Sep; 28(18):7148-53. PubMed ID: 2819056 [TBL] [Abstract][Full Text] [Related]
4. Oxidation of (horse) hemoglobin by copper: an intermediate detected by electron spin resonance. Rifkind JM Biochemistry; 1979 Sep; 18(18):3860-5. PubMed ID: 226117 [TBL] [Abstract][Full Text] [Related]
5. Internal electron transfer between hemes and Cu(II) bound at cysteine beta93 promotes methemoglobin reduction by carbon monoxide. Bonaventura C; Godette G; Tesh S; Holm DE; Bonaventura J; Crumbliss AL; Pearce LL; Peterson J J Biol Chem; 1999 Feb; 274(9):5499-507. PubMed ID: 10026163 [TBL] [Abstract][Full Text] [Related]
6. Hemoglobin and Myoglobin as Reducing Agents in Biological Systems. Redox Reactions of Globins with Copper and Iron Salts and Complexes. Postnikova GB; Shekhovtsova EA Biochemistry (Mosc); 2016 Dec; 81(13):1735-1753. PubMed ID: 28260494 [TBL] [Abstract][Full Text] [Related]
7. The oxidation of cat, human, and the cat-human hybrid hemoglobins alpha 2 human beta 2 cat and alpha 2 cat beta 2 human by copper(II). Taketa F; Antholine WE J Inorg Biochem; 1982 Oct; 17(2):109-20. PubMed ID: 7175522 [TBL] [Abstract][Full Text] [Related]
8. Effects of metal ions in the CuB center on the redox properties of heme in heme-copper oxidases: spectroelectrochemical studies of an engineered heme-copper center in myoglobin. Zhao X; Yeung N; Wang Z; Guo Z; Lu Y Biochemistry; 2005 Feb; 44(4):1210-4. PubMed ID: 15667214 [TBL] [Abstract][Full Text] [Related]
9. Oxidation of human haemoglobin by copper. Mechanism and suggested role of the thiol group of residue beta-93. Winterbourn CC; Carrell RW Biochem J; 1977 Jul; 165(1):141-8. PubMed ID: 889569 [TBL] [Abstract][Full Text] [Related]
10. Redox-dependent structural changes in an engineered heme-copper center in myoglobin: insights into chloride binding to CuB in heme copper oxidases. Zhao X; Nilges MJ; Lu Y Biochemistry; 2005 May; 44(17):6559-64. PubMed ID: 15850389 [TBL] [Abstract][Full Text] [Related]
11. Thiols, gold-thiols, zinc-thiols and the redox state of hemoglobin. Potuznik S; Gelvan D; Burda P; Saltman P Biochim Biophys Acta; 1993 Aug; 1164(3):289-98. PubMed ID: 8343528 [TBL] [Abstract][Full Text] [Related]
12. Interaction between low-affinity cupric ion and human methemoglobin. Antholine WE; Basosi R; Hyde JS; Taketa F J Inorg Biochem; 1984 Jun; 21(2):125-36. PubMed ID: 6330294 [TBL] [Abstract][Full Text] [Related]
13. Copper and zinc binding properties of the N-terminal histidine-rich sequence of Haemophilus ducreyi Cu,Zn superoxide dismutase. Paksi Z; Jancsó A; Pacello F; Nagy N; Battistoni A; Gajda T J Inorg Biochem; 2008 Sep; 102(9):1700-10. PubMed ID: 18565588 [TBL] [Abstract][Full Text] [Related]
14. Resonance Raman investigation of the effects of copper binding to iron-mesoporphyrin.histidine-rich glycoprotein complexes. Larsen RW; Nunez DJ; Morgan WT; Muhoberac BB; Ondrias MR Biophys J; 1992 Apr; 61(4):1007-17. PubMed ID: 1581496 [TBL] [Abstract][Full Text] [Related]
15. Binding of fatty acids facilitates oxidation of cysteine-34 and converts copper-albumin complexes from antioxidants to prooxidants. Gryzunov YA; Arroyo A; Vigne JL; Zhao Q; Tyurin VA; Hubel CA; Gandley RE; Vladimirov YA; Taylor RN; Kagan VE Arch Biochem Biophys; 2003 May; 413(1):53-66. PubMed ID: 12706341 [TBL] [Abstract][Full Text] [Related]
17. Effects of temperature, oxygen, heme ligands and sulfhydryl alkylation on the reactions of nitroprusside and nitroglycerin with hemoglobin. Kruszyna H; Kruszyna R; Rochelle LG; Smith RP; Wilcox DE Biochem Pharmacol; 1993 Jul; 46(1):95-102. PubMed ID: 8394076 [TBL] [Abstract][Full Text] [Related]
18. Kinetics and mechanisms of the oxidation of myoglobin by Fe(III) and Cu(II) complexes. Hegetschweiler K; Saltman P; Dalvit C; Wright PE Biochim Biophys Acta; 1987 Apr; 912(3):384-97. PubMed ID: 3567208 [TBL] [Abstract][Full Text] [Related]
19. FTIR detection of protonation/deprotonation of key carboxyl side chains caused by redox change of the Cu(A)-heme a moiety and ligand dissociation from the heme a3-Cu(B) center of bovine heart cytochrome c oxidase. Okuno D; Iwase T; Shinzawa-Itoh K; Yoshikawa S; Kitagawa T J Am Chem Soc; 2003 Jun; 125(24):7209-18. PubMed ID: 12797794 [TBL] [Abstract][Full Text] [Related]
20. Magnesium(II) and zinc(II)-protoporphyrin IX's stabilize the lowest oxygen affinity state of human hemoglobin even more strongly than deoxyheme. Miyazaki G; Morimoto H; Yun KM; Park SY; Nakagawa A; Minagawa H; Shibayama N J Mol Biol; 1999 Oct; 292(5):1121-36. PubMed ID: 10512707 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]