These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 18722167)

  • 21. Maxillary sinus floor elevation using a tissue-engineered bone with rhBMP-2-loaded porous calcium phosphate cement scaffold and bone marrow stromal cells in rabbits.
    Xia L; Xu Y; Wei J; Zeng D; Ye D; Liu C; Zhang Z; Jiang X
    Cells Tissues Organs; 2011; 194(6):481-93. PubMed ID: 21494013
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering.
    Kim SS; Sun Park M; Jeon O; Yong Choi C; Kim BS
    Biomaterials; 2006 Mar; 27(8):1399-409. PubMed ID: 16169074
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo approach of calcium deficient hydroxyapatite filler as bone induction factor.
    Cardoso GBC; Tondon A; Maia LRB; Cunha MR; Zavaglia CAC; Kaunas RR
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():999-1006. PubMed ID: 30889775
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds.
    Ye X; Yin X; Yang D; Tan J; Liu G
    Tissue Eng Part C Methods; 2012 Jul; 18(7):545-56. PubMed ID: 22250840
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Platelet-rich plasma improves expansion of human mesenchymal stem cells and retains differentiation capacity and in vivo bone formation in calcium phosphate ceramics.
    Vogel JP; Szalay K; Geiger F; Kramer M; Richter W; Kasten P
    Platelets; 2006 Nov; 17(7):462-9. PubMed ID: 17074722
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Encapsulation of mesenchymal stem cells in chitosan/β-glycerophosphate hydrogel for seeding on a novel calcium phosphate cement scaffold.
    Liu T; Li J; Shao Z; Ma K; Zhang Z; Wang B; Zhang Y
    Med Eng Phys; 2018 Jun; 56():9-15. PubMed ID: 29576458
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microencapsulated rBMMSCs/calcium phosphate cement for bone formation in vivo.
    Wang J; Qiao P; Dong L; Li F; Xu T; Xie Q
    Biomed Mater Eng; 2014; 24(1):835-43. PubMed ID: 24211970
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model.
    Xue D; Zheng Q; Zong C; Li Q; Li H; Qian S; Zhang B; Yu L; Pan Z
    J Biomed Mater Res A; 2010 Jul; 94(1):259-70. PubMed ID: 20166224
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering.
    Chung EJ; Sugimoto M; Koh JL; Ameer GA
    Tissue Eng Part C Methods; 2012 Feb; 18(2):113-21. PubMed ID: 21933018
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inorganic/organic biocomposite cryogels for regeneration of bony tissues.
    Mishra R; Kumar A
    J Biomater Sci Polym Ed; 2011; 22(16):2107-26. PubMed ID: 21067655
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics.
    Mastrogiacomo M; Scaglione S; Martinetti R; Dolcini L; Beltrame F; Cancedda R; Quarto R
    Biomaterials; 2006 Jun; 27(17):3230-7. PubMed ID: 16488007
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alginate/poly (lactic-co-glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering.
    Qi X; Ye J; Wang Y
    J Biomed Mater Res A; 2009 Jun; 89(4):980-7. PubMed ID: 18470921
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro and animal study of novel nano-hydroxyapatite/poly(epsilon-caprolactone) composite scaffolds fabricated by layer manufacturing process.
    Heo SJ; Kim SE; Wei J; Kim DH; Hyun YT; Yun HS; Kim HK; Yoon TR; Kim SH; Park SA; Shin JW; Shin JW
    Tissue Eng Part A; 2009 May; 15(5):977-89. PubMed ID: 18803480
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of hybrid porous biomimetic nano-hydroxyapatite/polyamide 6 and bone marrow-derived stem cell construct in repair of calvarial critical size defect.
    Khadka A; Li J; Li Y; Gao Y; Zuo Y; Ma Y
    J Craniofac Surg; 2011 Sep; 22(5):1852-8. PubMed ID: 21959450
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Study on hydroxyapatite porous scaffold bonded by phosphates and its biocompatibility].
    Dong Y; Zhang Q; Liu B; Guo Z; Lin P; Pu Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Oct; 22(5):985-9. PubMed ID: 16294736
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vivo biocompatibility of new nano-calcium-deficient hydroxyapatite/poly-amino acid complex biomaterials.
    Dai Z; Li Y; Lu W; Jiang D; Li H; Yan Y; Lv G; Yang A
    Int J Nanomedicine; 2015; 10():6303-16. PubMed ID: 26504382
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fast setting calcium phosphate-chitosan scaffold: mechanical properties and biocompatibility.
    Xu HH; Simon CG
    Biomaterials; 2005 Apr; 26(12):1337-48. PubMed ID: 15482821
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering craniofacial scaffolds.
    Hollister SJ; Lin CY; Saito E; Lin CY; Schek RD; Taboas JM; Williams JM; Partee B; Flanagan CL; Diggs A; Wilke EN; Van Lenthe GH; Müller R; Wirtz T; Das S; Feinberg SE; Krebsbach PH
    Orthod Craniofac Res; 2005 Aug; 8(3):162-73. PubMed ID: 16022718
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Induction of bone tissue on different matrices: an in vitro and a in vivo pilot study in the SCID mouse].
    Kasten P; Luginbühl R; Vogel J; Niemeyer P; Weiss S; Van Griensven M; Krettek C; Bohner M; Bosch U; Tonak M
    Z Orthop Ihre Grenzgeb; 2004; 142(4):467-75. PubMed ID: 15346310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.