BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 18722347)

  • 1. Caveolae as potential mediators of MCH-signaling pathways.
    Cook LB; Delorme-Axford EB; Robinson K
    Biochem Biophys Res Commun; 2008 Oct; 375(4):592-5. PubMed ID: 18722347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of the kappa opioid receptor in lipid rafts.
    Xu W; Yoon SI; Huang P; Wang Y; Chen C; Chong PL; Liu-Chen LY
    J Pharmacol Exp Ther; 2006 Jun; 317(3):1295-306. PubMed ID: 16505160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caveolae facilitate but are not essential for platelet-activating factor-mediated calcium mobilization and extracellular signal-regulated kinase activation.
    Poisson C; Rollin S; Véronneau S; Bousquet SM; Larrivée JF; Le Gouill C; Boulay G; Stankova J; Rola-Pleszczynski M
    J Immunol; 2009 Aug; 183(4):2747-57. PubMed ID: 19620302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a neuronal cell line expressing native human melanin-concentrating hormone receptor 1 (MCHR1).
    Fry D; Dayton B; Brodjian S; Ogiela C; Sidorowicz H; Frost LJ; McNally T; Reilly RM; Collins CA
    Int J Biochem Cell Biol; 2006; 38(8):1290-9. PubMed ID: 16524757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Caveolin-1 interacts and cooperates with the transforming growth factor-beta type I receptor ALK1 in endothelial caveolae.
    Santibanez JF; Blanco FJ; Garrido-Martin EM; Sanz-Rodriguez F; del Pozo MA; Bernabeu C
    Cardiovasc Res; 2008 Mar; 77(4):791-9. PubMed ID: 18065769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. P-Glycoprotein is localized in intermediate-density membrane microdomains distinct from classical lipid rafts and caveolar domains.
    Radeva G; Perabo J; Sharom FJ
    FEBS J; 2005 Oct; 272(19):4924-37. PubMed ID: 16176266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CCR5 internalisation and signalling have different dependence on membrane lipid raft integrity.
    Cardaba CM; Kerr JS; Mueller A
    Cell Signal; 2008 Sep; 20(9):1687-94. PubMed ID: 18573334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smooth muscle caveolae differentially regulate specific agonist induced bladder contractions.
    Cristofaro V; Peters CA; Yalla SV; Sullivan MP
    Neurourol Urodyn; 2007; 26(1):71-80. PubMed ID: 17123298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholesterol reduction by methyl-beta-cyclodextrin attenuates the delta opioid receptor-mediated signaling in neuronal cells but enhances it in non-neuronal cells.
    Huang P; Xu W; Yoon SI; Chen C; Chong PL; Liu-Chen LY
    Biochem Pharmacol; 2007 Feb; 73(4):534-49. PubMed ID: 17141202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. G-protein-coupled receptor-signaling components in membrane raft and caveolae microdomains.
    Patel HH; Murray F; Insel PA
    Handb Exp Pharmacol; 2008; (186):167-84. PubMed ID: 18491052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hexose transporters GLUT1 and GLUT3 are colocalized with hexokinase I in caveolae microdomains of rat spermatogenic cells.
    Rauch MC; Ocampo ME; Bohle J; Amthauer R; Yáñez AJ; Rodríguez-Gil JE; Slebe JC; Reyes JG; Concha II
    J Cell Physiol; 2006 May; 207(2):397-406. PubMed ID: 16419038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caveolae and lipid rafts: G protein-coupled receptor signaling microdomains in cardiac myocytes.
    Insel PA; Head BP; Ostrom RS; Patel HH; Swaney JS; Tang CM; Roth DM
    Ann N Y Acad Sci; 2005 Jun; 1047():166-72. PubMed ID: 16093494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caveolins, caveolae, and lipid rafts in cellular transport, signaling, and disease.
    Quest AF; Leyton L; Párraga M
    Biochem Cell Biol; 2004 Feb; 82(1):129-44. PubMed ID: 15052333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Urokinase-receptor-mediated phenotypic changes in vascular smooth muscle cells require the involvement of membrane rafts.
    Kiyan J; Smith G; Haller H; Dumler I
    Biochem J; 2009 Oct; 423(3):343-51. PubMed ID: 19691446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane microdomains, caveolae, and caveolar endocytosis of sphingolipids.
    Cheng ZJ; Singh RD; Marks DL; Pagano RE
    Mol Membr Biol; 2006; 23(1):101-10. PubMed ID: 16611585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localisation of endothelin B receptor variants to plasma membrane microdomains and its effects on downstream signalling.
    Grossmann S; Higashiyama S; Oksche A; Schaefer M; Tannert A
    Mol Membr Biol; 2009 Aug; 26(5):279-92. PubMed ID: 19757321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insulin-like growth factor-1 receptor signaling in 3T3-L1 adipocyte differentiation requires lipid rafts but not caveolae.
    Hong S; Huo H; Xu J; Liao K
    Cell Death Differ; 2004 Jul; 11(7):714-23. PubMed ID: 15002041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nongenomic steroid- and ceramide-induced maturation in amphibian oocytes involves functional caveolae-like microdomains associated with a cytoskeletal environment.
    Buschiazzo J; Alonso TS; Biscoglio M; Antollini SS; Bonini IC
    Biol Reprod; 2011 Oct; 85(4):808-22. PubMed ID: 21653896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of ATP-sensitive K+ channels by caveolin-enriched microdomains in cardiac myocytes.
    Garg V; Jiao J; Hu K
    Cardiovasc Res; 2009 Apr; 82(1):51-8. PubMed ID: 19181933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Caveolin-1 and lipid rafts in confluent BeWo trophoblasts: evidence for Rock-1 association with caveolin-1.
    Rashid-Doubell F; Tannetta D; Redman CW; Sargent IL; Boyd CA; Linton EA
    Placenta; 2007; 28(2-3):139-51. PubMed ID: 16480767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.