BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 18722432)

  • 1. Direct site-selective covalent protein immobilization catalyzed by a phosphopantetheinyl transferase.
    Wong LS; Thirlway J; Micklefield J
    J Am Chem Soc; 2008 Sep; 130(37):12456-64. PubMed ID: 18722432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-specific protein labeling by Sfp phosphopantetheinyl transferase.
    Yin J; Lin AJ; Golan DE; Walsh CT
    Nat Protoc; 2006; 1(1):280-5. PubMed ID: 17406245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphopantetheinyl transferase catalyzed site-specific protein labeling with ADP conjugated chemical probes.
    Zou Y; Yin J
    J Am Chem Soc; 2009 Jun; 131(22):7548-9. PubMed ID: 19441828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescent site-specific labeling of Escherichia coli expressed proteins with Sfp phosphopantetheinyl transferase.
    Zhang A; Sun L; Buswell J; Considine N; Ghosh I; Masharina A; Noren C; Xu MQ
    Methods Mol Biol; 2011; 705():295-307. PubMed ID: 21125394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-selective immobilisation of functional enzymes on to polystyrene nanoparticles.
    Wong LS; Okrasa K; Micklefield J
    Org Biomol Chem; 2010 Feb; 8(4):782-7. PubMed ID: 20135034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphopantetheinyl transferase-catalyzed formation of bioactive hydrogels for tissue engineering.
    Mosiewicz KA; Johnsson K; Lutolf MP
    J Am Chem Soc; 2010 May; 132(17):5972-4. PubMed ID: 20373804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-based mutational analysis of the 4'-phosphopantetheinyl transferases Sfp from Bacillus subtilis: carrier protein recognition and reaction mechanism.
    Mofid MR; Finking R; Essen LO; Marahiel MA
    Biochemistry; 2004 Apr; 43(14):4128-36. PubMed ID: 15065855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific labeling of cell surface proteins with chemically diverse compounds.
    George N; Pick H; Vogel H; Johnsson N; Johnsson K
    J Am Chem Soc; 2004 Jul; 126(29):8896-7. PubMed ID: 15264811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetically encoded short peptide tags for orthogonal protein labeling by Sfp and AcpS phosphopantetheinyl transferases.
    Zhou Z; Cironi P; Lin AJ; Xu Y; Hrvatin S; Golan DE; Silver PA; Walsh CT; Yin J
    ACS Chem Biol; 2007 May; 2(5):337-46. PubMed ID: 17465518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of the surfactin synthetase-activating enzyme sfp: a prototype of the 4'-phosphopantetheinyl transferase superfamily.
    Reuter K; Mofid MR; Marahiel MA; Ficner R
    EMBO J; 1999 Dec; 18(23):6823-31. PubMed ID: 10581256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional immobilization and patterning of proteins by an enzymatic transfer reaction.
    Waichman S; Bhagawati M; Podoplelova Y; Reichel A; Brunk A; Paterok D; Piehler J
    Anal Chem; 2010 Feb; 82(4):1478-85. PubMed ID: 20092261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phagemid encoded small molecules for high throughput screening of chemical libraries.
    Yin J; Liu F; Schinke M; Daly C; Walsh CT
    J Am Chem Soc; 2004 Oct; 126(42):13570-1. PubMed ID: 15493886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Labeling proteins with small molecules by site-specific posttranslational modification.
    Yin J; Liu F; Li X; Walsh CT
    J Am Chem Soc; 2004 Jun; 126(25):7754-5. PubMed ID: 15212504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loading peptidyl-coenzyme A onto peptidyl carrier proteins: a novel approach in characterizing macrocyclization by thioesterase domains.
    Sieber SA; Walsh CT; Marahiel MA
    J Am Chem Soc; 2003 Sep; 125(36):10862-6. PubMed ID: 12952465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oriented immobilization of antibodies with GST-fused multiple Fc-specific B-domains on a gold surface.
    Ha TH; Jung SO; Lee JM; Lee KY; Lee Y; Park JS; Chung BH
    Anal Chem; 2007 Jan; 79(2):546-56. PubMed ID: 17222019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chapter 10 using phosphopantetheinyl transferases for enzyme posttranslational activation, site specific protein labeling and identification of natural product biosynthetic gene clusters from bacterial genomes.
    Sunbul M; Zhang K; Yin J
    Methods Enzymol; 2009; 458():255-75. PubMed ID: 19374986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein function microarrays based on self-immobilizing and self-labeling fusion proteins.
    Sielaff I; Arnold A; Godin G; Tugulu S; Klok HA; Johnsson K
    Chembiochem; 2006 Jan; 7(1):194-202. PubMed ID: 16342318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and evaluation of bioorthogonal pantetheine analogues for in vivo protein modification.
    Meier JL; Mercer AC; Rivera H; Burkart MD
    J Am Chem Soc; 2006 Sep; 128(37):12174-84. PubMed ID: 16967968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase.
    Yin J; Straight PD; McLoughlin SM; Zhou Z; Lin AJ; Golan DE; Kelleher NL; Kolter R; Walsh CT
    Proc Natl Acad Sci U S A; 2005 Nov; 102(44):15815-20. PubMed ID: 16236721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of soluble co-factor dependent protein expression in vivo: application to the 4'-phosphopantetheinyl transferase PptT from Mycobacterium tuberculosis.
    Rottier K; Faille A; Prudhomme T; Leblanc C; Chalut C; Cabantous S; Guilhot C; Mourey L; Pedelacq JD
    J Struct Biol; 2013 Sep; 183(3):320-328. PubMed ID: 23916562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.