BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 18722542)

  • 1. A model for integration of DNA into the genome during transformation of Fusarium graminearum.
    Watson RJ; Burchat S; Bosley J
    Fungal Genet Biol; 2008 Oct; 45(10):1348-63. PubMed ID: 18722542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a highly efficient gene targeting system for Fusarium graminearum using the disruption of a polyketide synthase gene as a visible marker.
    Maier FJ; Malz S; Lösch AP; Lacour T; Schäfer W
    FEMS Yeast Res; 2005 Apr; 5(6-7):653-62. PubMed ID: 15780665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method for making directed changes to the Fusarium graminearum genome without leaving markers or other extraneous DNA.
    Watson RJ; Wang S
    Fungal Genet Biol; 2012 Jul; 49(7):556-66. PubMed ID: 22664277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination.
    Gouka RJ; Gerk C; Hooykaas PJ; Bundock P; Musters W; Verrips CT; de Groot MJ
    Nat Biotechnol; 1999 Jun; 17(6):598-601. PubMed ID: 10385327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-specific in situ amplification of the integrated polyomavirus genome: a case for a context-specific over-replication model of gene amplification.
    Syu LJ; Fluck MM
    J Mol Biol; 1997 Aug; 271(1):76-99. PubMed ID: 9300056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonhomologous end joining and homologous recombination DNA repair pathways in integration mutagenesis in the xylose-fermenting yeast Pichia stipitis.
    Maassen N; Freese S; Schruff B; Passoth V; Klinner U
    FEMS Yeast Res; 2008 Aug; 8(5):735-43. PubMed ID: 18435744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homologous recombination and allele replacement in transformants of Fusarium fujikuroi.
    Fernández-Martín R; Cerdá-Olmedo E; Avalos J
    Mol Gen Genet; 2000 Jun; 263(5):838-45. PubMed ID: 10905351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromosomal targeting of replicating plasmids in the yeast Hansenula polymorpha.
    Faber KN; Swaving GJ; Faber F; Ab G; Harder W; Veenhuis M; Haima P
    J Gen Microbiol; 1992 Nov; 138(11):2405-16. PubMed ID: 1479359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homologous recombination and double-strand break repair in the transformation of Rhizopus oryzae.
    Skory CD
    Mol Genet Genomics; 2002 Nov; 268(3):397-406. PubMed ID: 12436261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene-specific disruption in the filamentous fungus Cercospora nicotianae using a split-marker approach.
    You BJ; Lee MH; Chung KR
    Arch Microbiol; 2009 Jul; 191(7):615-22. PubMed ID: 19506835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient circularization in Escherichia coli of linear plasmid multimers from Dictyostelium discoideum genomic DNA.
    Barth C; Wilczynska Z; Pontes L; Fraser DJ; Fisher PR
    Plasmid; 1996 Sep; 36(2):86-94. PubMed ID: 8954880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Agrocybe aegerita mitochondrial genome contains two inverted repeats of the nad4 gene arisen by duplication on both sides of a linear plasmid integration site.
    Ferandon C; Chatel Sel K; Castandet B; Castroviejo M; Barroso G
    Fungal Genet Biol; 2008 Mar; 45(3):292-301. PubMed ID: 18039587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum.
    Khang CH; Park SY; Lee YH; Kang S
    Fungal Genet Biol; 2005 Jun; 42(6):483-92. PubMed ID: 15893252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epstein-Barr virus plasmid model system for analyzing recombination in human cells.
    Phillips JE; Thyagarajan B; Calos MP
    Plasmid; 1999 May; 41(3):198-206. PubMed ID: 10366525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic side effects accompanying gene targeting in yeast: the influence of short heterologous termini.
    Svetec IK; Stafa A; Zgaga Z
    Yeast; 2007 Aug; 24(8):637-52. PubMed ID: 17534847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Filamentous Fungi (Magnaporthe grisea and Fusarium oxysporum).
    Khang CH; Park SY; Rho HS; Lee YH; Kang S
    Methods Mol Biol; 2006; 344():403-20. PubMed ID: 17033082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The RecJ DNase strongly suppresses genomic integration of short but not long foreign DNA fragments by homology-facilitated illegitimate recombination during transformation of Acinetobacter baylyi.
    Harms K; Schön V; Kickstein E; Wackernagel W
    Mol Microbiol; 2007 May; 64(3):691-702. PubMed ID: 17462017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of non-homologous end joining and integration of DNA upon transformation of Rhizopus oryzae.
    Skory CD
    Mol Genet Genomics; 2005 Nov; 274(4):373-83. PubMed ID: 16133163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transfer of plastid DNA from tobacco to the soil bacterium Acinetobacter sp. by natural transformation.
    de Vries J; Herzfeld T; Wackernagel W
    Mol Microbiol; 2004 Jul; 53(1):323-34. PubMed ID: 15225325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of non-homologous end-joining deficiency on random and targeted DNA integration: implications for gene targeting.
    Iiizumi S; Kurosawa A; So S; Ishii Y; Chikaraishi Y; Ishii A; Koyama H; Adachi N
    Nucleic Acids Res; 2008 Nov; 36(19):6333-42. PubMed ID: 18835848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.