These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 18722619)

  • 1. Biomechanical effect of mineral heterogeneity in trabecular bone.
    Renders GA; Mulder L; Langenbach GE; van Ruijven LJ; van Eijden TM
    J Biomech; 2008 Sep; 41(13):2793-8. PubMed ID: 18722619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mineral heterogeneity affects predictions of intratrabecular stress and strain.
    Renders GA; Mulder L; van Ruijven LJ; Langenbach GE; van Eijden TM
    J Biomech; 2011 Feb; 44(3):402-7. PubMed ID: 21040918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical consequences of developmental changes in trabecular architecture and mineralization of the pig mandibular condyle.
    Mulder L; van Ruijven LJ; Koolstra JH; van Eijden TM
    J Biomech; 2007; 40(7):1575-82. PubMed ID: 17056047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation.
    Chevalier Y; Pahr D; Allmer H; Charlebois M; Zysset P
    J Biomech; 2007; 40(15):3333-40. PubMed ID: 17572433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of boundary conditions on computed apparent elastic properties of cancellous bone.
    Pahr DH; Zysset PK
    Biomech Model Mechanobiol; 2008 Dec; 7(6):463-76. PubMed ID: 17972122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Couple-stress moduli of a trabecular bone idealized as a 3D periodic cellular network.
    Yoo A; Jasiuk I
    J Biomech; 2006; 39(12):2241-52. PubMed ID: 16153655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elastic properties and masticatory bone stress in the macaque mandible.
    Dechow PC; Hylander WL
    Am J Phys Anthropol; 2000 Aug; 112(4):553-74. PubMed ID: 10918129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of mineralization on intratrabecular stress and strain distribution in developing trabecular bone.
    Mulder L; van Ruijven LJ; Koolstra JH; van Eijden TM
    Ann Biomed Eng; 2007 Oct; 35(10):1668-77. PubMed ID: 17605109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scale and boundary conditions effects on the apparent elastic moduli of trabecular bone modeled as a periodic cellular solid.
    Wang C; Feng L; Jasiuk I
    J Biomech Eng; 2009 Dec; 131(12):121008. PubMed ID: 20524731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biomechanical response of human bone: the influence of bone volume and mineral density.
    Kemper A; Ng T; Duma S
    Biomed Sci Instrum; 2006; 42():284-9. PubMed ID: 16817622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissociation of mineral and collagen orientations may differentially adapt compact bone for regional loading environments: results from acoustic velocity measurements in deer calcanei.
    Skedros JG; Sorenson SM; Takano Y; Turner CH
    Bone; 2006 Jul; 39(1):143-51. PubMed ID: 16459155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic mechanical properties of trabecular calcaneus determined by finite-element models using 3D synchrotron microtomography.
    Follet H; Peyrin F; Vidal-Salle E; Bonnassie A; Rumelhart C; Meunier PJ
    J Biomech; 2007; 40(10):2174-83. PubMed ID: 17196599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tensile behavior of cortical bone: dependence of organic matrix material properties on bone mineral content.
    Kotha SP; Guzelsu N
    J Biomech; 2007; 40(1):36-45. PubMed ID: 16434048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regional variations in mineralization and strain distributions in the cortex of the human mandibular condyle.
    Cioffi I; van Ruijven LJ; Renders GA; Farella M; Michelotti A; van Eijden TM
    Bone; 2007 Dec; 41(6):1051-8. PubMed ID: 17921079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone tissue stiffness in the mandibular condyle is dependent on the direction and density of the cancellous structure.
    van Eijden TM; van Ruijven LJ; Giesen EB
    Calcif Tissue Int; 2004 Dec; 75(6):502-8. PubMed ID: 15654494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and mechanical properties of mandibular condylar bone.
    van Eijden TM; van der Helm PN; van Ruijven LJ; Mulder L
    J Dent Res; 2006 Jan; 85(1):33-7. PubMed ID: 16373677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of orthogonal overload on human vertebral trabecular bone mechanical properties.
    Badiei A; Bottema MJ; Fazzalari NL
    J Bone Miner Res; 2007 Nov; 22(11):1690-9. PubMed ID: 17620053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between tissue stiffness and degree of mineralization of developing trabecular bone.
    Mulder L; Koolstra JH; den Toonder JM; van Eijden TM
    J Biomed Mater Res A; 2008 Feb; 84(2):508-15. PubMed ID: 17618500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of enhanced continuum FE with micro FE models of human vertebral bodies.
    Pahr DH; Zysset PK
    J Biomech; 2009 Mar; 42(4):455-62. PubMed ID: 19155014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.