These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 18722779)

  • 21. Spatially-resolved structure and electronic properties of graphene on polycrystalline Ni.
    Sun J; Hannon JB; Tromp RM; Johari P; Bol AA; Shenoy VB; Pohl K
    ACS Nano; 2010 Dec; 4(12):7073-7. PubMed ID: 21062038
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study of atomic resolved plasmon-loss image by spherical aberration-corrected STEM-EELS method.
    Yamazaki T; Kotaka Y; Tsukada M; Kataoka Y
    Ultramicroscopy; 2010 Aug; 110(9):1161-5. PubMed ID: 20451326
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Raman and near-field spectroscopic study on localized surface plasmon excitation from the 2D nanostructure of gold nanoparticles.
    Hossain MK; Shimada T; Kitajima M; Imura K; Okamoto H
    J Microsc; 2008 Feb; 229(Pt 2):327-30. PubMed ID: 18304093
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electron energy losses in Ag nanoholes--from localized surface plasmon resonances to rings of fire.
    Sigle W; Nelayah J; Koch CT; van Aken PA
    Opt Lett; 2009 Jul; 34(14):2150-2. PubMed ID: 19823531
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toward 10 meV electron energy-loss spectroscopy resolution for plasmonics.
    Bellido EP; Rossouw D; Botton GA
    Microsc Microanal; 2014 Jun; 20(3):767-78. PubMed ID: 24690472
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Decisive factors for realizing atomic-column resolution using STEM and EELS.
    Kimoto K; Ishizuka K; Matsui Y
    Micron; 2008; 39(3):257-62. PubMed ID: 18054240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A sub-50meV spectrometer and energy filter for use in combination with 200kV monochromated (S)TEMs.
    Brink HA; Barfels MM; Burgner RP; Edwards BN
    Ultramicroscopy; 2003 Sep; 96(3-4):367-84. PubMed ID: 12871802
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thickness measurements using photonic modes in monochromated electron energy-loss spectroscopy.
    Yurtsever A; Couillard M; Hyun JK; Muller DA
    Microsc Microanal; 2014 Jun; 20(3):723-30. PubMed ID: 24612729
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cerenkov losses: a limit for bandgap determination and Kramers-Kronig analysis.
    Stöger-Pollach M; Franco H; Schattschneider P; Lazar S; Schaffer B; Grogger W; Zandbergen HW
    Micron; 2006; 37(5):396-402. PubMed ID: 16551502
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Target geometry dependence of electron energy loss spectra in scanning transmission electron microscopy (STEM).
    Rivacoba A; Aizpurua J; Zabala N
    Scanning Microsc; 1995; 9(4):927-36; discussion 937-8. PubMed ID: 8819881
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immuno-EM using colloidal metal nanoparticles and electron spectroscopic imaging for co-localization at high spatial resolution.
    Bleher R; Kandela I; Meyer DA; Albrecht RM
    J Microsc; 2008 Jun; 230(Pt 3):388-95. PubMed ID: 18503664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Measuring bandgap states in individual non-stoichiometric oxide nanoparticles using monochromated STEM EELS: The Praseodymium-ceria case.
    Bowman WJ; March K; Hernandez CA; Crozier PA
    Ultramicroscopy; 2016 Aug; 167():5-10. PubMed ID: 27152715
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High resolution mapping of surface reduction in ceria nanoparticles.
    Turner S; Lazar S; Freitag B; Egoavil R; Verbeeck J; Put S; Strauven Y; Van Tendeloo G
    Nanoscale; 2011 Aug; 3(8):3385-90. PubMed ID: 21720618
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The development and characteristics of a high-speed EELS mapping system for a dedicated STEM.
    Isakozawa S; Kaji K; Jarausch K; Terada S; Baba N
    J Electron Microsc (Tokyo); 2008 Apr; 57(2):41-5. PubMed ID: 18322296
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface plasmon resonances, optical properties, and electrical conductivity thermal hystersis of silver nanofibers produced by the electrospinning technique.
    Barakat NA; Woo KD; Kanjwal MA; Choi KE; Khil MS; Kim HY
    Langmuir; 2008 Oct; 24(20):11982-7. PubMed ID: 18811221
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Probing non-dipole allowed excitations in highly correlated materials with nanoscale resolution.
    Gloter A; Chu MW; Kociak M; Chen CH; Colliex C
    Ultramicroscopy; 2009 Oct; 109(11):1333-7. PubMed ID: 19573991
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanocrystalline Domain Identification in Gold Films, by Backscattered Electron Imaging and Energy-Filtered Transmission Electron Microscopy.
    Leite CA; Galembeck F
    J Colloid Interface Sci; 2001 Mar; 235(1):4-8. PubMed ID: 11237437
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low-energy acoustic plasmons at metal surfaces.
    Diaconescu B; Pohl K; Vattuone L; Savio L; Hofmann P; Silkin VM; Pitarke JM; Chulkov EV; Echenique PM; Farías D; Rocca M
    Nature; 2007 Jul; 448(7149):57-9. PubMed ID: 17611537
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation, characterization, and optical properties of gold, silver, and gold-silver alloy nanoshells having silica cores.
    Kim JH; Bryan WW; Lee TR
    Langmuir; 2008 Oct; 24(19):11147-52. PubMed ID: 18788760
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatially resolved scanning probe electron energy spectroscopy for Ag islands on a graphite surface.
    Xu C; Chen X; Zhou X; Wei Z; Liu W; Li J; Williams JF; Xu K
    Rev Sci Instrum; 2009 Oct; 80(10):103705. PubMed ID: 19895068
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.