These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 18722990)
1. Tetraploid citrus rootstocks are more tolerant to salt stress than diploid. Saleh B; Allario T; Dambier D; Ollitrault P; Morillon R C R Biol; 2008 Sep; 331(9):703-10. PubMed ID: 18722990 [TBL] [Abstract][Full Text] [Related]
2. Salinity tolerance of 'Valencia' orange trees on rootstocks with contrasting salt tolerance is not improved by moderate shade. García-Sánchez F; Syvertsen JP; Martínez V; Melgar JC J Exp Bot; 2006; 57(14):3697-706. PubMed ID: 16980596 [TBL] [Abstract][Full Text] [Related]
3. Tetraploidy enhances the ability to exclude chloride from leaves in carrizo citrange seedlings. Ruiz M; Quiñones A; Martínez-Cuenca MR; Aleza P; Morillon R; Navarro L; Primo-Millo E; Martínez-Alcántara B J Plant Physiol; 2016 Oct; 205():1-10. PubMed ID: 27589221 [TBL] [Abstract][Full Text] [Related]
4. Chloride absorption in salt-sensitive Carrizo citrange and salt-tolerant Cleopatra mandarin citrus rootstocks is linked to water use. Moya JL; Gómez-Cadenas A; Primo-Millo E; Talon M J Exp Bot; 2003 Feb; 54(383):825-33. PubMed ID: 12554725 [TBL] [Abstract][Full Text] [Related]
5. Better salinity tolerance in tetraploid vs diploid volkamer lemon seedlings is associated with robust antioxidant and osmotic adjustment mechanisms. Khalid MF; Hussain S; Anjum MA; Ahmad S; Ali MA; Ejaz S; Morillon R J Plant Physiol; 2020 Jan; 244():153071. PubMed ID: 31756571 [TBL] [Abstract][Full Text] [Related]
6. Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. Navarro JM; Pérez-Tornero O; Morte A J Plant Physiol; 2014 Jan; 171(1):76-85. PubMed ID: 23859560 [TBL] [Abstract][Full Text] [Related]
7. Nitrate improves growth in salt-stressed citrus seedlings through effects on photosynthetic activity and chloride accumulation. Iglesias DJ; Levy Y; Gómez-Cadenas A; Tadeo FR; Primo-Millo E; Talon M Tree Physiol; 2004 Sep; 24(9):1027-34. PubMed ID: 15234900 [TBL] [Abstract][Full Text] [Related]
8. Tetraploidization events by chromosome doubling of nucellar cells are frequent in apomictic citrus and are dependent on genotype and environment. Aleza P; Froelicher Y; Schwarz S; Agustí M; Hernández M; Juárez J; Luro F; Morillon R; Navarro L; Ollitrault P Ann Bot; 2011 Jul; 108(1):37-50. PubMed ID: 21586529 [TBL] [Abstract][Full Text] [Related]
9. Relationships between xylem anatomy, root hydraulic conductivity, leaf/root ratio and transpiration in citrus trees on different rootstocks. Rodríguez-Gamir J; Intrigliolo DS; Primo-Millo E; Forner-Giner MA Physiol Plant; 2010 Jun; 139(2):159-69. PubMed ID: 20088906 [TBL] [Abstract][Full Text] [Related]
11. Etiology of three recent diseases of citrus in São Paulo State: sudden death, variegated chlorosis and huanglongbing. Bové JM; Ayres AJ IUBMB Life; 2007; 59(4-5):346-54. PubMed ID: 17505974 [TBL] [Abstract][Full Text] [Related]
12. Cl- homeostasis in includer and excluder citrus rootstocks: transport mechanisms and identification of candidate genes. Brumós J; Talón M; Bouhlal R; Colmenero-Flores JM Plant Cell Environ; 2010 Dec; 33(12):2012-27. PubMed ID: 20573047 [TBL] [Abstract][Full Text] [Related]
13. Comparative metabolic and transcriptional analysis of a doubled diploid and its diploid citrus rootstock (C. junos cv. Ziyang xiangcheng) suggests its potential value for stress resistance improvement. Tan FQ; Tu H; Liang WJ; Long JM; Wu XM; Zhang HY; Guo WW BMC Plant Biol; 2015 Mar; 15():89. PubMed ID: 25848687 [TBL] [Abstract][Full Text] [Related]
14. Predominant expression of diploid mandarin leaf proteome in two citrus mandarin-derived somatic allotetraploid hybrids. Gancel AL; Grimplet J; Sauvage FX; Ollitrault P; Brillouet JM J Agric Food Chem; 2006 Aug; 54(17):6212-8. PubMed ID: 16910710 [TBL] [Abstract][Full Text] [Related]
15. Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. Zandalinas SI; Rivero RM; Martínez V; Gómez-Cadenas A; Arbona V BMC Plant Biol; 2016 Apr; 16():105. PubMed ID: 27121193 [TBL] [Abstract][Full Text] [Related]
16. Involvement of ascorbate peroxidase and heat shock proteins on citrus tolerance to combined conditions of drought and high temperatures. Balfagón D; Zandalinas SI; Baliño P; Muriach M; Gómez-Cadenas A Plant Physiol Biochem; 2018 Jun; 127():194-199. PubMed ID: 29609175 [TBL] [Abstract][Full Text] [Related]
17. High temperatures change the perspective: Integrating hormonal responses in citrus plants under co-occurring abiotic stress conditions. Balfagón D; Zandalinas SI; Gómez-Cadenas A Physiol Plant; 2019 Feb; 165(2):183-197. PubMed ID: 30091288 [TBL] [Abstract][Full Text] [Related]
18. Engineering of gibberellin levels in citrus by sense and antisense overexpression of a GA 20-oxidase gene modifies plant architecture. Fagoaga C; Tadeo FR; Iglesias DJ; Huerta L; Lliso I; Vidal AM; Talon M; Navarro L; García-Martínez JL; Peña L J Exp Bot; 2007; 58(6):1407-20. PubMed ID: 17317673 [TBL] [Abstract][Full Text] [Related]
19. Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. Arbona V; Hossain Z; López-Climent MF; Pérez-Clemente RM; Gómez-Cadenas A Physiol Plant; 2008 Apr; 132(4):452-66. PubMed ID: 18333999 [TBL] [Abstract][Full Text] [Related]
20. Large changes in anatomy and physiology between diploid Rangpur lime (Citrus limonia) and its autotetraploid are not associated with large changes in leaf gene expression. Allario T; Brumos J; Colmenero-Flores JM; Tadeo F; Froelicher Y; Talon M; Navarro L; Ollitrault P; Morillon R J Exp Bot; 2011 May; 62(8):2507-19. PubMed ID: 21273338 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]