These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 187230)

  • 1. Absorption and circular dichroism spectra of different forms of mushroom tyrosinase.
    Schoot Uiterkamp AJ; Evans LH; Jolley RL; Mason HS
    Biochim Biophys Acta; 1976 Nov; 453(1):200-4. PubMed ID: 187230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cobalt tyrosinase: replacement of the binuclear copper of Neurospora tyrosinase by cobalt.
    Rüegg C; Lerch K
    Biochemistry; 1981 Mar; 20(5):1256-62. PubMed ID: 6452896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurospora tyrosinase: structural, spectroscopic and catalytic properties.
    Lerch K
    Mol Cell Biochem; 1983; 52(2):125-38. PubMed ID: 6308414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and spectroscopic studies on catechol oxidases from Lycopus europaeus and Populus nigra: evidence for a dinuclear copper center of type 3 and spectroscopic similarities to tyrosinase and hemocyanin.
    Rompel A; Fischer H; Meiwes D; Büldt-Karentzopoulos K; Dillinger R; Tuczek F; Witzel H; Krebs B
    J Biol Inorg Chem; 1999 Feb; 4(1):56-63. PubMed ID: 10499103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The stoichiometry of tyrosinase-catalyzed oxidation of 4-hydroxyanisole.
    Dobrucki JW; Riley PA
    Free Radic Res Commun; 1988; 4(5):325-9. PubMed ID: 2853110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The inhibitory effect of benzenethiol on the cresolase and catecholase activities of mushroom tyrosinase.
    Saboury AA; Zolghadri S; Haghbeen K; Moosavi-Movahedi AA
    J Enzyme Inhib Med Chem; 2006 Dec; 21(6):711-7. PubMed ID: 17252944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and biological evaluation of helicid analogues as mushroom tyrosinase inhibitors.
    Yi W; Cao R; Wen H; Yan Q; Zhou B; Wan Y; Ma L; Song H
    Bioorg Med Chem Lett; 2008 Dec; 18(24):6490-3. PubMed ID: 18996693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New tyrosinase inhibitors, (+)-catechin-aldehyde polycondensates.
    Kim YJ; Chung JE; Kurisawa M; Uyama H; Kobayashi S
    Biomacromolecules; 2004; 5(2):474-9. PubMed ID: 15003008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity and structural changes of mushroom tyrosinase induced by n-alkyl sulfates.
    Gheibi N; Saboury AA; Haghbeen K; Moosavi-Movahedi AA
    Colloids Surf B Biointerfaces; 2005 Oct; 45(2):104-7. PubMed ID: 16144759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of two histidines as copper ligands in Streptomyces glaucescens tyrosinase.
    Huber M; Lerch K
    Biochemistry; 1988 Jul; 27(15):5610-5. PubMed ID: 2846043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential injection spectrophotometric system for evaluation of mushroom tyrosinase-inhibitory activity.
    Moonrungsee N; Shimamura T; Kashiwagi T; Jakmunee J; Higuchi K; Ukeda H
    Talanta; 2012 Nov; 101():233-9. PubMed ID: 23158317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening of inhibitors for mushroom tyrosinase using surface plasmon resonance.
    Patil S; Sistla S; Jadhav J
    J Agric Food Chem; 2014 Nov; 62(47):11594-601. PubMed ID: 25402844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Singlet oxygen generation during the oxidation of L-tyrosine and L-dopa with mushroom tyrosinase.
    Miyaji A; Kohno M; Inoue Y; Baba T
    Biochem Biophys Res Commun; 2016 Mar; 471(4):450-3. PubMed ID: 26898801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Azachalcones: a new class of potent polyphenol oxidase inhibitors.
    Radhakrishnan SK; Shimmon RG; Conn C; Baker AT
    Bioorg Med Chem Lett; 2015 Apr; 25(8):1753-1756. PubMed ID: 25782744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antigenicity, catalytic activity and conformation of Agaricus bisporus tyrosinase: interaction of conformation-directed antibodies with the native and irradiated enzyme.
    Khan IA; Ali R
    J Biochem; 1986 Feb; 99(2):445-52. PubMed ID: 3084463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of the catecholase and cresolase activity of mushroom tyrosinase by azide.
    Healey DF; Strothkamp KG
    Arch Biochem Biophys; 1981 Oct; 211(1):86-91. PubMed ID: 6796002
    [No Abstract]   [Full Text] [Related]  

  • 17. Substrate share in the suicide inactivation of mushroom tyrosinase.
    Haghbeen K; Saboury AA; Karbassi F
    Biochim Biophys Acta; 2004 Nov; 1675(1-3):139-46. PubMed ID: 15535977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability, structural and suicide inactivation changes of mushroom tyrosinase after acetylation by N-acetylimidazole.
    Saboury AA; Karbassi F; Haghbeen K; Ranjbar B; Moosavi-Movahedi AA; Farzami B
    Int J Biol Macromol; 2004 Aug; 34(4):257-62. PubMed ID: 15374682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual effects of aliphatic carboxylic acids on cresolase and catecholase reactions of mushroom tyrosinase.
    Gheibi N; Saboury AA; Haghbeen K; Rajaei F; Pahlevan AA
    J Enzyme Inhib Med Chem; 2009 Oct; 24(5):1076-81. PubMed ID: 19555185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH-dependent inhibition of mushroom tyrosinase by N-substituted N-nitrosohydroxylamines.
    Shiino M; Watanabe Y; Umezawa K
    J Enzyme Inhib Med Chem; 2008 Feb; 23(1):16-20. PubMed ID: 18341247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.