These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 18723107)

  • 1. Heterologous expression of D-xylulokinase from Pichia stipitis enables high levels of xylitol production by engineered Escherichia coli growing on xylose.
    Akinterinwa O; Cirino PC
    Metab Eng; 2009 Jan; 11(1):48-55. PubMed ID: 18723107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular cloning of XYL3 (D-xylulokinase) from Pichia stipitis and characterization of its physiological function.
    Jin YS; Jones S; Shi NQ; Jeffries TW
    Appl Environ Microbiol; 2002 Mar; 68(3):1232-9. PubMed ID: 11872473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific expression patterns of xyl1, xyl2 and xyl3 in response to different sugars in Pichia stipitis.
    Han JH; Park JY; Kang HW; Choi GW; Chung BW; Min J
    J Microbiol Biotechnol; 2010 May; 20(5):946-9. PubMed ID: 20519920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xylitol production by a Pichia stipitis D-xylulokinase mutant.
    Jin YS; Cruz J; Jeffries TW
    Appl Microbiol Biotechnol; 2005 Jul; 68(1):42-5. PubMed ID: 15635458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of xylose transporters in xylitol production from engineered Escherichia coli.
    Khankal R; Chin JW; Cirino PC
    J Biotechnol; 2008 Apr; 134(3-4):246-52. PubMed ID: 18359531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase.
    Matsushika A; Sawayama S
    Enzyme Microb Technol; 2011 May; 48(6-7):466-71. PubMed ID: 22113018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fermentation kinetics for xylitol production by a Pichia stipitis D: -xylulokinase mutant previously grown in spent sulfite liquor.
    Rodrigues RC; Lu C; Lin B; Jeffries TW
    Appl Biochem Biotechnol; 2008 Mar; 148(1-3):199-209. PubMed ID: 18418752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological and enzymatic comparison between Pichia stipitis and recombinant Saccharomyces cerevisiae on xylose fermentation.
    Guo C; Jiang N
    World J Microbiol Biotechnol; 2013 Mar; 29(3):541-7. PubMed ID: 23180545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis.
    Kim SR; Kwee NR; Kim H; Jin YS
    FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a xylulokinase catalyzing xylulose phosphorylation in the xylose metabolic pathway of Kluyveromyces marxianus NBRC1777.
    Wang R; Zhang L; Wang D; Gao X; Hong J
    J Ind Microbiol Biotechnol; 2011 Oct; 38(10):1739-46. PubMed ID: 21451977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30.
    Rodrigues RC; Kenealy WR; Jeffries TW
    J Ind Microbiol Biotechnol; 2011 Oct; 38(10):1649-55. PubMed ID: 21424687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability.
    Toivari MH; Aristidou A; Ruohonen L; Penttilä M
    Metab Eng; 2001 Jul; 3(3):236-49. PubMed ID: 11461146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae.
    Parachin NS; Bergdahl B; van Niel EW; Gorwa-Grauslund MF
    Metab Eng; 2011 Sep; 13(5):508-17. PubMed ID: 21642010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity.
    Jin YS; Ni H; Laplaza JM; Jeffries TW
    Appl Environ Microbiol; 2003 Jan; 69(1):495-503. PubMed ID: 12514033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae.
    Lee SH; Kodaki T; Park YC; Seo JH
    J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of D-xylulokinase from the D-xylose-fermenting fungus, Mucor circinelloides.
    Komeda H; Yamasaki-Yashiki S; Hoshino K; Asano Y
    FEMS Microbiol Lett; 2014 Nov; 360(1):51-61. PubMed ID: 25163569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of bacterial xylose isomerase and yeast host xylulokinase improves xylose alcoholic fermentation in the thermotolerant yeast Hansenula polymorpha.
    Dmytruk OV; Voronovsky AY; Abbas CA; Dmytruk KV; Ishchuk OP; Sibirny AA
    FEMS Yeast Res; 2008 Feb; 8(1):165-73. PubMed ID: 17662053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells.
    Sakamoto T; Hasunuma T; Hori Y; Yamada R; Kondo A
    J Biotechnol; 2012 Apr; 158(4):203-10. PubMed ID: 21741417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae.
    Hasunuma T; Sung KM; Sanda T; Yoshimura K; Matsuda F; Kondo A
    Appl Microbiol Biotechnol; 2011 May; 90(3):997-1004. PubMed ID: 21246355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioethanol production from xylose by recombinant Saccharomyces cerevisiae expressing xylose reductase, NADP(+)-dependent xylitol dehydrogenase, and xylulokinase.
    Matsushika A; Watanabe S; Kodaki T; Makino K; Sawayama S
    J Biosci Bioeng; 2008 Mar; 105(3):296-9. PubMed ID: 18397783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.