These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 18723278)

  • 21. Characterization of spent nickel-metal hydride batteries and a preliminary economic evaluation of the recovery processes.
    Lin SL; Huang KL; Wang IC; Chou IC; Kuo YM; Hung CH; Lin C
    J Air Waste Manag Assoc; 2016 Mar; 66(3):296-306. PubMed ID: 26651506
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The fate and management of high mercury-containing lamps from high technology industry.
    Chang TC; You SJ; Yu BS; Kong HW
    J Hazard Mater; 2007 Mar; 141(3):784-92. PubMed ID: 16979288
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-crystal intermetallic M-Sn (M = Fe, Cu, Co, Ni) nanospheres as negative electrodes for lithium-ion batteries.
    Wang XL; Han WQ; Chen J; Graetz J
    ACS Appl Mater Interfaces; 2010 May; 2(5):1548-51. PubMed ID: 20443576
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans.
    Mishra D; Kim DJ; Ralph DE; Ahn JG; Rhee YH
    Waste Manag; 2008; 28(2):333-8. PubMed ID: 17376665
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recovery of nickel, cobalt and some salts from spent Ni-MH batteries.
    Rabah MA; Farghaly FE; Abd-El Motaleb MA
    Waste Manag; 2008; 28(7):1159-67. PubMed ID: 17714929
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.
    Chen X; Chen Y; Zhou T; Liu D; Hu H; Fan S
    Waste Manag; 2015 Apr; 38():349-56. PubMed ID: 25619126
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermodynamic analysis to assess the environmental impact of end-of-life recovery processing for nanotechnology products.
    Olapiriyakul S; Caudill RJ
    Environ Sci Technol; 2009 Nov; 43(21):8140-6. PubMed ID: 19924935
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization and recycling of cadmium from waste nickel-cadmium batteries.
    Huang K; Li J; Xu Z
    Waste Manag; 2010 Nov; 30(11):2292-8. PubMed ID: 20541388
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A reversible copper extrusion-insertion electrode for rechargeable Li batteries.
    Morcrette M; Rozier P; Dupont L; Mugnier E; Sannier L; Galy J; Tarascon JM
    Nat Mater; 2003 Nov; 2(11):755-61. PubMed ID: 14578878
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Laboratory study on the behaviour of spent AA household alkaline batteries in incineration.
    Almeida MF; Xará SM; Delgado J; Costa CA
    Waste Manag; 2009 Jan; 29(1):342-9. PubMed ID: 18544470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Power sources for portable electronics and hybrid cars: lithium batteries and fuel cells.
    Scrosati B
    Chem Rec; 2005; 5(5):286-97. PubMed ID: 16211622
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An overview of recycling and treatment of scrap computers.
    Lee CH; Chang CT; Fan KS; Chang TC
    J Hazard Mater; 2004 Oct; 114(1-3):93-100. PubMed ID: 15511578
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid system.
    Peng C; Hamuyuni J; Wilson BP; Lundström M
    Waste Manag; 2018 Jun; 76():582-590. PubMed ID: 29510945
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modified coin cells for in situ Raman spectroelectrochemical measurements of Li(x)V2O5 for lithium rechargeable batteries.
    Burba CM; Frech R
    Appl Spectrosc; 2006 May; 60(5):490-3. PubMed ID: 16756699
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries.
    Chen H; Armand M; Demailly G; Dolhem F; Poizot P; Tarascon JM
    ChemSusChem; 2008; 1(4):348-55. PubMed ID: 18605101
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria.
    Xin B; Zhang D; Zhang X; Xia Y; Wu F; Chen S; Li L
    Bioresour Technol; 2009 Dec; 100(24):6163-9. PubMed ID: 19656671
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device.
    Okamoto E; Nakamura M; Akasaka Y; Inoue Y; Abe Y; Chinzei T; Saito I; Isoyama T; Mochizuki S; Imachi K; Mitamura Y
    Artif Organs; 2007 Jul; 31(7):538-41. PubMed ID: 17584478
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste.
    Kang DH; Chen M; Ogunseitan OA
    Environ Sci Technol; 2013 May; 47(10):5495-503. PubMed ID: 23638841
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries.
    Poizot P; Laruelle S; Grugeon S; Dupont L; Tarascon JM
    Nature; 2000 Sep; 407(6803):496-9. PubMed ID: 11028997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.