BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 18723380)

  • 21. Deoxyribonucleotide metabolism in cycling and resting human fibroblasts with a missense mutation in p53R2, a subunit of ribonucleotide reductase.
    Pontarin G; Ferraro P; Rampazzo C; Kollberg G; Holme E; Reichard P; Bianchi V
    J Biol Chem; 2011 Apr; 286(13):11132-40. PubMed ID: 21297166
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recessive deoxyguanosine kinase deficiency causes juvenile onset mitochondrial myopathy.
    Buchaklian AH; Helbling D; Ware SM; Dimmock DP
    Mol Genet Metab; 2012 Sep; 107(1-2):92-4. PubMed ID: 22622127
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation by degradation, a cellular defense against deoxyribonucleotide pool imbalances.
    Rampazzo C; Miazzi C; Franzolin E; Pontarin G; Ferraro P; Frangini M; Reichard P; Bianchi V
    Mutat Res; 2010 Nov; 703(1):2-10. PubMed ID: 20561600
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Administration of deoxyribonucleosides or inhibition of their catabolism as a pharmacological approach for mitochondrial DNA depletion syndrome.
    Cámara Y; González-Vioque E; Scarpelli M; Torres-Torronteras J; Caballero A; Hirano M; Martí R
    Hum Mol Genet; 2014 May; 23(9):2459-67. PubMed ID: 24362886
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetic properties of mutant deoxyguanosine kinase in a case of reversible hepatic mtDNA depletion.
    Mousson de Camaret B; Taanman JW; Padet S; Chassagne M; Mayençon M; Clerc-Renaud P; Mandon G; Zabot MT; Lachaux A; Bozon D
    Biochem J; 2007 Mar; 402(2):377-85. PubMed ID: 17073823
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitochondrial purine and pyrimidine metabolism and beyond.
    Wang L
    Nucleosides Nucleotides Nucleic Acids; 2016 Dec; 35(10-12):578-594. PubMed ID: 27906631
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potentially diagnostic electron paramagnetic resonance spectra elucidate the underlying mechanism of mitochondrial dysfunction in the deoxyguanosine kinase deficient rat model of a genetic mitochondrial DNA depletion syndrome.
    Bennett B; Helbling D; Meng H; Jarzembowski J; Geurts AM; Friederich MW; Van Hove JLK; Lawlor MW; Dimmock DP
    Free Radic Biol Med; 2016 Mar; 92():141-151. PubMed ID: 26773591
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activity profiles of deoxynucleoside kinases and 5'-nucleotidases in cultured adipocytes and myoblastic cells: insights into mitochondrial toxicity of nucleoside analogs.
    Rylova SN; Albertioni F; Flygh G; Eriksson S
    Biochem Pharmacol; 2005 Mar; 69(6):951-60. PubMed ID: 15748706
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deoxyribonucleotides and disorders of mitochondrial DNA integrity.
    Saada A
    DNA Cell Biol; 2004 Dec; 23(12):797-806. PubMed ID: 15684706
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Depletion of mitochondrial DNA by down-regulation of deoxyguanosine kinase expression in non-proliferating HeLa cells.
    Franco M; Johansson M; Karlsson A
    Exp Cell Res; 2007 Jul; 313(12):2687-94. PubMed ID: 17490647
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nucleoside supplementation modulates mitochondrial DNA copy number in the dguok -/- zebrafish.
    Munro B; Horvath R; Müller JS
    Hum Mol Genet; 2019 Mar; 28(5):796-803. PubMed ID: 30428046
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clinical, biochemical and morphological features of hepatocerebral syndrome with mitochondrial DNA depletion due to deoxyguanosine kinase deficiency.
    Labarthe F; Dobbelaere D; Devisme L; De Muret A; Jardel C; Taanman JW; Gottrand F; Lombès A
    J Hepatol; 2005 Aug; 43(2):333-41. PubMed ID: 15964659
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enzyme kinetics of the mitochondrial deoxyribonucleoside salvage pathway are not sufficient to support rapid mtDNA replication.
    Gandhi VV; Samuels DC
    PLoS Comput Biol; 2011 Aug; 7(8):e1002078. PubMed ID: 21829339
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activation of guanine-β-D-arabinofuranoside and deoxyguanosine to triphosphates by a common pathway blocks T lymphoblasts at different checkpoints.
    Leanza L; Miazzi C; Ferraro P; Reichard P; Bianchi V
    Exp Cell Res; 2010 Dec; 316(20):3443-53. PubMed ID: 20603113
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Altered gene transcription profiles in fibroblasts harboring either TK2 or DGUOK mutations indicate compensatory mechanisms.
    Villarroya J; de Bolós C; Meseguer A; Hirano M; Vilà MR
    Exp Cell Res; 2009 May; 315(8):1429-38. PubMed ID: 19265691
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of mitochondrial dNTP levels in cells with reduced TK2 activity.
    Desler C; Munch-Petersen B; Rasmussen LJ
    Nucleosides Nucleotides Nucleic Acids; 2006; 25(9-11):1171-5. PubMed ID: 17065084
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Purinogenic immunodeficiency diseases. Differential effects of deoxyadenosine and deoxyguanosine on DNA synthesis in human T lymphoblasts.
    Wilson JM; Mitchell BS; Daddona PE; Kelley WN
    J Clin Invest; 1979 Nov; 64(5):1475-84. PubMed ID: 115901
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trace amounts of 8-oxo-dGTP in mitochondrial dNTP pools reduce DNA polymerase gamma replication fidelity.
    Pursell ZF; McDonald JT; Mathews CK; Kunkel TA
    Nucleic Acids Res; 2008 Apr; 36(7):2174-81. PubMed ID: 18276636
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measurement of mitochondrial dNTP pools.
    Martí R; Dorado B; Hirano M
    Methods Mol Biol; 2012; 837():135-48. PubMed ID: 22215545
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deoxynucleoside salvage enzymes and tissue specific mitochondrial DNA depletion.
    Wang L
    Nucleosides Nucleotides Nucleic Acids; 2010 Jun; 29(4-6):370-81. PubMed ID: 20544522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.